欢迎来到天天文库
浏览记录
ID:1900291
大小:32.50 KB
页数:7页
时间:2017-11-13
《哲学其它相关毕业论文 弗雷格的概念悖论及其解决》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、湖南师范大学本科毕业论文考籍号:XXXXXXXXX姓名:XXX专业:哲学其它相关论文题目:弗雷格的概念悖论及其解决指导老师:XXX二〇一一年十二月十日【内容提要】摘要:弗雷格主张谓词是句子函项,因而是有空位的或待填充的,当专名填入其空位后便构成一个句子。笔者认为,弗雷格的这一观点无疑是正确的和重要的。不过,弗雷格进而主张,谓词的指称即概念也是有空位的和不完整的,从而与语义完整的专名所指称的对象严格地分开来。弗雷格的这后一主张引起一些严重的困难,其中包括概念悖论。笔者认为,尽管谓词在其语言形式上是不完整的,但其语义——无论是涵义还是指称——却是完整的;因
2、此,当谓词作为句子的主词时并不会产生弗雷格所面临的问题,即不完整的概念如何成为完整的对象呢?相应地也就不会出现弗雷格所面临的概念悖论。【关键词】谓词/专名/函项/概念/悖论【正文】弗雷格(GottlobFrege,1848-1925)作为现代语言哲学和分析哲学的创始人是以其意义理论而著称的。尽管弗雷格的意义理论对于逻辑学和哲学的发展产生了巨大的推动作用,但是它也面临一些严重的理论困境,其中之一就是概念悖论。本文旨在介绍并解决这一悖论,为此,首先介绍弗雷格的有关观点和讨论一些有关的问题。 1、涵义与指称弗雷格的意义理论的重要观点之一是:将一个简单句
3、子分为专名和谓词,其中专名的意义是完整的,谓词是有空位的或待填充的,因而其意义是不完整的;专名、谓词和句子在其意义上均有两个不同的方面,即指称和涵义,并且指称是由涵义决定的。(注:弗雷格的术语”Bedeutung”和”sinn”可以分别英译为”reference”和”sense”,本文译为“指称”和“涵义”,相当于文献[1]中的“意谓”和“意义”。德语中的”Funktion”相当于英语中的”function”,[1]中译为“函数”,本文则根据语境有时译为“函数”,有时译为“函项”。)不过需要说明的是,把指称和涵义统称为意义(meaning)只是其他人(
4、包括笔者)所采用的,而弗雷格本人只谈指称和涵义。弗雷格在其《论涵义和指称》中,从一个最简单的等式a=b入手,挖掘出语言表达式的两层意义即涵义与指称,其论证是很简明的。弗雷格问道,a=b表达了什么之间的等同关系,具体地说,它表达了a和b所代表的对象之间的等同关系还是”a”和”b”这两个符号之间的等同关系?显然,后者是不成立的,因为a和b作为符号是明显不同的。并且,前者也是不成立的,否则,当a=b为真时,a=b和a=a就表达了完全相同的关系,即a和b所代表的那个对象与其自身等同;然而,事实并非如此。举例来说,“晨星”和“暮星”表达了相同的对象即金星,但是,
5、“晨星是晨星”是一个毫无经验内容的逻辑真理,而“晨星是暮星”则是天文学上的一个重要发现。可见,这两个句子表达的等同关系并不完全相同,也就是说,这两个句子所表达的并不仅仅是“晨星”或“暮星”所代表的对象之间的等同关系,由此,弗雷格得出结论:a=b并不是仅指符号之间的关系,也不是仅指对象之间的关系,而是兼而有之;具体地说,它表明”a”和”b”这两个不同的符号指称相同的对象。对同一对象给予不同的符号就是对该对象给予不同的表达方式(themodeofpresentati-on)。对象的表达方式,弗雷格称之为“涵义”,对象本身,弗雷格称之为“指称”;涵义具有认识
6、论价值,指称具有本体论价值。当然,涵义和指称都是相对于语言表达式而言的,以上讨论是就专名而言的;具体地说,“晨星”和“暮星”这两个专名具有不同的涵义而具有相同的指称。弗雷格关于句子和谓词的讨论很大程度上是在与数学函数的类比中进行的。有些函数解析式如2X[2]+X,其自变量的值和函数的值都是数;与此不同,X[2]=1这个函数解析式的自变量X的值是数,而其函数的值却不是数,而是真或假;如将-1和1代入X,此函数值为真,而将其他数值代入X,函数值则为假。这种情形类似于自然语言的句子。如“苏格拉底是人”这个句子可以分为两部分,即专名“苏格拉底”和谓词“……是人
7、”;“……是人”是不完整的(incompleted)或待填充的(unsat-urated),其作用相当于一个函数,“苏格拉底”是独立的和完整的,其作用相当于自变量的某一特定值。当“苏格拉底”填入“……是人”的空位后便成为一完整的句子,其值是真;而将“金字塔”填入“……是人”的空位后,其函数值是假。据此,弗雷格把谓词称为其值为真值(真或假)的函项表达式。函数X[2]=1也是一个谓词,自变量X的值如1、2、……等相当于专名。弗雷格注意到,X[2]这个函数的自变量一旦被代入具体数值后,其指称就是函数值,如当X=2时,X[2]的指称是4,因为2[2]=4。同理
8、,X[2]=1中的X一旦被代入具体数值后便成为句子,其指称就是其函数值即真值。由此,弗雷格得出
此文档下载收益归作者所有