欢迎来到天天文库
浏览记录
ID:18473824
大小:1.66 MB
页数:24页
时间:2018-09-18
《2010年中考数学真题分类汇编(150套)专题十九·二次函数的应用》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、1.(2010甘肃)向空中发射一枚炮弹,经x秒后的高度为y米,且时间与高度的关系为y=ax2+bx+c(a≠0).若此炮弹在第7秒与第14秒时的高度相等,则在下列时间中炮弹所在高度最高的是()A.第8秒B.第10秒C.第12秒D.第15秒【答案】B3.(2010重庆江津)如图,等腰Rt△ABC(∠ACB=90º)的直角边与正方形DEFG的边长均为2,且AC与DE在同一直线上,开始时点C与点D重合,让△ABC沿这条直线向右平移,直到点A与点E重合为止.设CD的长为,△ABC与正方形DEFG重合部分(图中阴影部分)的
2、面积为,则与之间的函数关系的图象大致是()【答案】A1.(2010甘肃兰州)如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为米.【答案】中第24页共24页2.(2010四川成都)如图,在中,,,,动点从点开始沿边向以的速度移动(不与点重合),动点从点开始沿边向以的速度移动(不与点重合).如果、分别从、同时出发,那么经过____________
3、_秒,四边形的面积最小.【答案】3中3.(2010内蒙古包头)将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是cm2.【答案】或中2.(2010安徽省中中考)春节期间某水库养殖场为适应市场需求,连续用20天时间,采用每天降低水位以减少捕捞成本的办法,对水库中某种鲜鱼进行捕捞、销售。九(1)班数学建模兴趣小组根据调查,整理出第天(且为整数)的捕捞与销售的相关信息如下:⑴在此期间该养殖场每天的捕捞量与前一末的捕捞量相比是如何变化的?⑵假定该养殖场每天捕捞和
4、销售的鲜鱼没有损失,且能在当天全部售出,求第天的收入(元)与(天)之间的函数关系式?(当天收入=日销售额—日捕捞成本)试说明⑵中的函数随的变化情况,并指出在第几天取得最大值,最大值是多少?【答案】第24页共24页好3.(2010安徽芜湖)(本小题满分8分)用长度为20m的金属材料制成如图所示的金属框,下部为矩形,上部为等腰直角三角形,其斜边长为2xm.当该金属框围成的图形面积最大时,图形中矩形的相邻两边长各为多少?请求出金属框围成的图形的最大面积.【答案】良5.(2010江苏南通)(本小题满分14分)已知抛物线y
5、=ax2+bx+c经过A(-4,3)、B(2,0)两点,当x=3和x=-3时,这条抛物线上对应点的纵坐标相等.经过点C(0,-2)的直线l与x轴平行,O为坐标原点.第24页共24页(1)求直线AB和这条抛物线的解析式;(2)以A为圆心,AO为半径的圆记为⊙A,判断直线l与⊙A的位置关系,并说明理由;(3)设直线AB上的点D的横坐标为-1,P(m,n)是抛物线y=ax2+bx+c上的动点,当△PDO的周长最小时,求四边形CODP的面积.-1yxO(第28题)1234-2-4-33-1-2-3-4412【答案】(1)
6、因为当x=3和x=-3时,这条抛物线上对应点的纵坐标相等,故b=0.设直线AB的解析式为y=kx+b,把A(-4,3)、B(2,0)代入到y=ax2+bx+c,得解得∴这条抛物线的解析式为y=x2-1.设直线AB的解析式为y=kx+b,把A(-4,3)、B(2,0)代入到y=kx+b,得解得∴这条直线的解析式为y=-x+1.(2)依题意,OA=即⊙A的半径为5.而圆心到直线l的距离为3+2=5.即圆心到直线l的距离=⊙A的半径,∴直线l与⊙A相切.(3)由题意,把x=-1代入y=-x+1,得y=,即D(-1,).
7、第24页共24页由(2)中点A到原点距离跟到直线y=-2的距离相等,且当点A成为抛物线上一个动点时,仍然具有这样的性质,于是过点D作DH⊥直线l于H,交抛物线于点P,此时易得DH是D点到l最短距离,点P坐标(-1,-)此时四边形PDOC为梯形,面积为.6.(2010山东青岛)某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:.(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得
8、最大利润?(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)【答案】解:(1)由题意,得:w=(x-20)·y=(x-20)·().答:当销售单价定为35元时,每月可获得最大利润.3分(2)由题
此文档下载收益归作者所有