欢迎来到天天文库
浏览记录
ID:18257401
大小:322.00 KB
页数:6页
时间:2018-09-16
《二次函数闭区间上的最值问题》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、二次函数闭区间上的最值问题与根的分布一、二次函数闭区间上的最值问题一元二次函数的区间最值问题,核心是对函数对称轴与给定区间的相对位置关系的讨论。一般分为:对称轴在区间的左边,中间,右边三种情况.设,求在上的最大值与最小值。分析:将配方,得对称轴方程当时,抛物线开口向上若必在顶点取得最小值,离对称轴较远端点处取得最大值;若当时,抛物线开口向上,此时函数在上具有单调性,故在离对称轴较远端点处取得最大值,较近端点处取得最小值。当时,如上,作图可得结论,对二次函数的区间最值结合函数图象总结如下:当时当时1.定二次函数在定区间上的最值
2、二次函数是给定的,给出的定义域区间也是固定的,我们称这种情况是“定二次函数在定区间上的最值”。例1.函数在区间上的最大值是_________,最小值是_______。6例1:解:函数是定义在区间上的二次函数,其对称轴方程是,顶点坐标为(2,2),且其图象开口向下,显然其顶点横坐标在[0,3]上,如图1所示。函数的最大值为,最小值为。例2.已知,求函数的最值。例2:解:由已知,可得,即函数是定义在区间上的二次函数。将二次函数配方得,其对称轴方程,顶点坐标,且图象开口向上。显然其顶点横坐标不在区间内,如图2所示。函数的最小值为,
3、最大值为。解后反思:已知二次函数(不妨设),它的图象是顶点为、对称轴为、开口向上的抛物线。由数形结合可得在上的最大值或最小值:(1)当时,的最小值是的最大值是中的较大者。(2)当时若,由在上是增函数则的最小值是,最大值是若,由在上是减函数则的最大值是,最小值是2.动二次函数在定区间上的最值二次函数随着参数a的变化而变化,即其图象是运动的,但定义域区间是固定的,我们称这种情况是“动二次函数在定区间上的最值”。例3.已知,且,求函数的最值。例3:解:由已知有,于是函数是定义在区间上的二次函数,将配方得:6二次函数的对称轴方程是顶
4、点坐标为,图象开口向上由可得,显然其顶点横坐标在区间的左侧或左端点上。函数的最小值是,最大值是。例4.已知二次函数在区间上的最大值为5,求实数a的值。例4:解:将二次函数配方得,其对称轴方程为,顶点坐标为,图象开口方向由a决定。很明显,其顶点横坐标在区间上。若,函数图象开口向下,如图4所示,当时,函数取得最大值5即解得故若时,函数图象开口向上,如图5所示,当时,函数取得最大值5即解得故综上讨论,函数在区间上取得最大值5时,解后反思:例3中,二次函数的对称轴是随参数a变化的,但图象开口方向是固定的;例4中,二次函数的对称轴是固
5、定的,但图象开口方向是随参数a变化的。3.定二次函数在动区间上的最值二次函数是确定的,但它的定义域区间是随参数t而变化的,我们称这种情况是“定函数在动区间上的最值”。例5.如果函数定义在区间上,求的最小值。例5:解:函数,其对称轴方程为,顶点坐标为(1,1),图象开口向上。如图6所示,若顶点横坐标在区间左侧时,有。当时,函数取得最小值。如图7所示,若顶点横坐标在区间上时,有,即。当时,函数取得最小值6。如图8所示,若顶点横坐标在区间右侧时,有,即。当时,函数取得最小值综上讨论,例6.设函数的定义域为,对任意,求函数的最小值的
6、解析式。例6:解:将二次函数配方得:其对称轴方程为,顶点坐标为,图象开口向上若顶点横坐标在区间左侧,则,即。当时,函数取得最小值若顶点横坐标在区间上,则,即。当时,函数取得最小值若顶点横坐标在区间右侧,则,即。当时,函数取得最小值综上讨论,得4.动二次函数在动区间上的最值二次函数是含参数的函数,而定义域区间也是变化的,我们称这种情况是“动二次函数在动区间上的最值”。例7.已知,且当时,的最小值为4,求参数a的值。例7:解:将代入S中,得则S是x的二次函数,其定义域为,对称轴方程为,顶点坐标为,图象开口向上。若,即6则当时,此
7、时,,或若,即则当时,此时,,或(因舍去)综上讨论,参变数a的取值为,或,或另外,若函数图象的开口方向、对称轴均不确定,且动区间所含参数与确定函数的参数一致,可采用先斩后奏的方法。二次函数在闭区间上的最值只可能在区间端点、顶点处取得,不妨令之为最值,验证参数的资格,进行取舍。课后练习:区间最值问题答案66
此文档下载收益归作者所有