欢迎来到天天文库
浏览记录
ID:30025919
大小:122.00 KB
页数:7页
时间:2018-12-26
《闭区间上二次函数的最值问题》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、闭区间上二次函数的最值问题《试题调研》网站免费精品资料下载:http:/www.tesoon.com/stdy/二次函数是最简单的非线性函数之一,自身性质活跃,同时经常作为其他函数的载体。二次函数在某一区间上的最值问题,是初中二次函数内容的继续和发展,随着区间的确定或变化,以及在系数中增添参变数,使其又成为高考数学中的热点。一.定二次函数在定区间上的最值二次函数是给定的,给出的定义域区间也是固定的,我们称这种情况是“定二次函数在定区间上的最值”。例1.函数在区间[0,3]上的最大值是_________,最小值是_______。解:函数是定义在区间[0,3]上的二次函数,其对称轴方程是,顶
2、点坐标为(2,2),且其图象开口向下,显然其顶点横坐标在[0,3]上,如图1所示。函数的最大值为,最小值为。图1例2.已知,求函数的最值。解:由已知,可得,即函数是定义在区间上的二次函数。将二次函数配方得,其对称轴方程,顶点坐标,且图象开口向上。显然其顶点横坐标不在区间内,如图2所示。函数的最小值为,最大值为。第7页(共7页)-------------------------------------------------------------------------------------------------------------------------------------
3、--图2解后反思:已知二次函数(不妨设),它的图象是顶点为、对称轴为、开口向上的抛物线。由数形结合可得在[m,n]上的最大值或最小值:(1)当时,的最小值是的最大值是中的较大者。(2)当时若,由在上是增函数则的最小值是,最大值是若,由在上是减函数则的最大值是,最小值是二.动二次函数在定区间上的最值二次函数随着参数a的变化而变化,即其图象是运动的,但定义域区间是固定的,我们称这种情况是“动二次函数在定区间上的最值”。例3.已知,且,求函数的最值。解:由已知有,于是函数是定义在区间上的二次函数,将配方得:二次函数的对称轴方程是顶点坐标为,图象开口向上由可得,显然其顶点横坐标在区间的左侧或左端
4、点上。函数的最小值是,最大值是。第7页(共7页)---------------------------------------------------------------------------------------------------------------------------------------图3例4.已知二次函数在区间上的最大值为5,求实数a的值。解:将二次函数配方得,其对称轴方程为,顶点坐标为,图象开口方向由a决定。很明显,其顶点横坐标在区间上。若,函数图象开口向下,如图4所示,当时,函数取得最大值5即解得故图4若时,函数图象开口向上,如图5所示,当时,函数取
5、得最大值5即解得故第7页(共7页)---------------------------------------------------------------------------------------------------------------------------------------图5综上讨论,函数在区间上取得最大值5时,解后反思:例3中,二次函数的对称轴是随参数a变化的,但图象开口方向是固定的;例4中,二次函数的对称轴是固定的,但图象开口方向是随参数a变化的。三.定二次函数在动区间上的最值二次函数是确定的,但它的定义域区间是随参数t而变化的,我们称这种情况是“定函
6、数在动区间上的最值”。例5.如果函数定义在区间上,求的最小值。解:函数,其对称轴方程为,顶点坐标为(1,1),图象开口向上。如图6所示,若顶点横坐标在区间左侧时,有。当时,函数取得最小值。图6如图7所示,若顶点横坐标在区间上时,有,即。当时,函数取得最小值。第7页(共7页)---------------------------------------------------------------------------------------------------------------------------------------图7如图8所示,若顶点横坐标在区间右侧时,有,即。
7、当时,函数取得最小值综上讨论,图8例6.设函数的定义域为,对任意,求函数的最小值的解析式。解:将二次函数配方得:其对称轴方程为,顶点坐标为,图象开口向上若顶点横坐标在区间左侧,则,即。当时,函数取得最小值若顶点横坐标在区间上,则,即。当时,函数取得最小值若顶点横坐标在区间右侧,则,即。当时,函数取得最小值综上讨论,得第7页(共7页)---------------------------------------------------
此文档下载收益归作者所有