欢迎来到天天文库
浏览记录
ID:17998113
大小:2.34 MB
页数:159页
时间:2018-09-12
《悖论在三次数学危机中的作用》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、数学之美2007年11月总第3期数学方法与数学思想编辑点评:该文谈悖论,但并不是面面俱到地谈悖论,而是专门谈悖论在三次数学危机中的作用,不但主题鲜明、集中,而且由于三次数学危机在数学史中的地位,文章的选题就也显得非常重要。作者对悖论与三次数学危机的关系,有比较准确、深入的理解;又查阅了大量的文献,用自己的语言组织成文,文字通顺,脉络清晰,繁简得当,论述到位。读者从这篇文章中,不仅能够了解什么是悖论,还能够了解什么是历史上的三次数学危机;不仅能够了解悖论在其中的作用,而且能够了解危机的解决对推动数学发展的作用;所以,本
2、文有相当的可读性,是一篇优秀的论文。悖论在三次数学危机中的作用王子珺(数学科学学院统计学系0510162)摘要:本文介绍了悖论在推动数学发展过程中的贡献,主要关注悖论引发的三次数学危机,以及研究悖论的重要意义。关键词:悖论;数学危机1什么是悖论有一种命题,你无法证明它究竟是真还是假,这种命题,就叫做悖论。悖论——paradox来自希腊语“para+dokein”,意思是“多想一想”。悖论不是诡辩,它是完美无缺的,经得起推敲的命题,你既不能证明它是真,也不能证明它是假;或者说,你既可以证明它是真,也可以证明它是假。《辞
3、海》中说,悖论就是逻辑学和数学中的一种“矛盾命题”。即如果你假定一个命题是真的,那么经过一系列正确的推导可以得出该命题是假的;反之如果假定命题为假,则又能同样合理地推出命题为真。这一系列的“真真假假”,吸引了古今中外无数人对于逻辑和数学精密性的兴趣和思考,其中包括众多科学家、思想家以及无数爱好者。每一个著名悖论的提出,往往都标志着一个新理论的开始;每一次解决悖论的过程,都在将这个新理论向前推进。随着悖论不断地被提出和解决,众多学科得以快速发展前进。悖论当然也具有非常重要的数学意义。从古希腊的希伯斯提出的悖论开始,一直
4、到罗素的关于集合论的悖论,很多悖论的提出都震撼了数学的基础,由此也对数学理论的发展起了巨大的推动作用。YibinCityCitytracktrafficplanningisYibincityregionalrangewithintracktrafficsystemofonceintegration,andcitytracktrafficalsoisYibinCityCityintegratedtracktrafficsystemintheofpart,foraccurategraspcitytracktrafficr
5、esearchofobject159数学之美2007年11月总第3期这里特别需要指出的是悖论在三次数学危机中的巨大作用,是它们造成了这三次危机,而每一次危机的化解都使得数学这棵大树的根基更加稳固。2希伯斯悖论——第一次数学危机公元前六世纪,古希腊有个著名的学派叫做毕达哥拉斯学派,其创始人毕达哥拉斯(Pythagoras)是当时著名数学家与哲学家。在此学派的兴盛期,毕达哥拉斯的思想是绝对权威的真理。由他本人提出的著名命题“万物皆数”(这里的数指整数)是该学派的重要基石,他们的信仰是:世界上的一切都可归结为整数或整数之比
6、,而且这一思想也被当时的人们所普遍接受。这个学派后来又发现了毕达哥拉斯定理(即勾股定理)。然而,正是这个在当时令众多人兴奋不已的定理,在毕达哥拉斯学派的基石上砸出了裂缝。毕达哥拉斯定理提出后不久,其学派中的一个成员希伯斯(Hippasus)发现了一个问题:边长为1的正方形其对角线长度L不能用整数或整数之比来表示(即为无理数的证明)。这在当时就造成了矛盾,其悖论性在于:当时人们认为一切数都可表示为整数或整数之比,L是一个数,则L也可以被这样表示出来,但由勾股定理以及一系列定理可以得出L不可以被整数或其比所表示,这是违背
7、了人们的普遍认知的,被认为是由正确的推理得出的“错误”结论。这一重大发现使得希伯斯受到毕达哥拉斯忠实门徒的追杀,直至他惨遭毒手,被扔进地中海。尽管他本人被杀害,但这个发现还是被许多人知道了。希伯斯的问题导致了数学史上第一个无理数的诞生。它的出现在当时的数学界乃至整个社会掀起了一场巨大风暴,它直接动摇了毕达哥拉斯学派的数学信仰,是对“万物皆数”的反驳。实际上,这一伟大发现不但是对毕达哥拉斯学派的致命打击,对于当时所有古希腊人的观念这都是一个极大的冲击,从而导致了第一次数学危机。在这个问题的推动下,更多的数学家开始研究数
8、的基础理论。为解决这一问题,人们把证明引入了数学,数学逐渐从经验科学变为演绎科学。直到十九世纪下半叶,现在意义上的实数理论建立起来后,无理数的本质才被彻底搞清。它在数学中合法地位的确立,一方面使人类对数的认识从有理数拓展到实数,另一方面也真正彻底、圆满地解决了第一次数学危机。无理数的发现,推动了除四则运算外的其他运算方法的使用。这次危机也使得人
此文档下载收益归作者所有