圆锥曲线综合习题

圆锥曲线综合习题

ID:16187802

大小:597.75 KB

页数:6页

时间:2018-08-08

圆锥曲线综合习题_第1页
圆锥曲线综合习题_第2页
圆锥曲线综合习题_第3页
圆锥曲线综合习题_第4页
圆锥曲线综合习题_第5页
资源描述:

《圆锥曲线综合习题》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、圆锥曲线1.在平面直角坐标系xOy中,已知椭圆C1:的离心率e=,且椭圆C上的点到Q(0,2)的距离的最大值为3.(1)求椭圆C的方程;(2)在椭圆C上,是否存在点M(m,n)使得直线l:mx+ny=1与圆O:x2+y2=1相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及相对应的△OAB的面积;若不存在,请说明理由。2.如图,在平面直角坐标系xOy中,椭圆的左、右焦点分别为,.已知和都在椭圆上,其中e为椭圆的离心率.(1)求椭圆的离心率;21世纪教育网(2)设A,B是椭圆上位于x轴上方的两点,且直线与直线平行,与交于点P.(i)若,求直线的斜率;(ii

2、)求证:是定值.3.已知曲线.(1)若曲线是焦点在轴上的椭圆,求的取值范围;(2)设,曲线与轴的交点为,(点位于点的上方),直线与曲线交于不同的两点,,直线与直线交于点,求证:,,三点共线.4.设A是单位圆x2+y2=1上的任意一点,i是过点A与x轴垂直的直线,D是直线i与x轴的交点,点M在直线l上,且满足丨DM丨=m丨DA丨(m>0,且m≠1)。当点A在圆上运动时,记点M的轨迹为曲线C。(I)求曲线C的方程,判断曲线C为何种圆锥曲线,并求焦点坐标;-6-(Ⅱ)过原点且斜率为k的直线交曲线C于P、Q两点,其中P在第一象限,它在y轴上的射影为点N,直线QN交曲线C于另一点H,

3、是否存在m,使得对任意的k>0,都有PQ⊥PH?若存在,求m的值;若不存在,请说明理由。5.如图,椭圆的左焦点为,右焦点为,离心率。过的直线交椭圆于两点,且的周长为8。(Ⅰ)求椭圆的方程。(Ⅱ)设动直线与椭圆有且只有一个公共点,且与直线相交于点。试探究:在坐标平面内是否存在定点,使得以为直径的圆恒过点?若存在,求出点的坐标;若不存在,说明理由。6.海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰好在失事船正南方向12海里处,如图.现假设:①失事船的移动路径可视为抛物线;②定位后救援船即刻沿直线

4、匀速前往救援;③救援船出发小时后,失事船所在位置的横坐标为.(1)当时,写出失事船所在位置的纵坐标.若此时两船恰好会合,求救援船速度的大小和方向;(2)问救援船的时速至少是多少海里才能追上失事船?7.在平面直角坐标系中,已知双曲线:.(1)过的左顶点引的一条渐进线的平行线,求该直线与另一条渐进线及轴围成的三角形的面积;(2)设斜率为1的直线交于、两点,若与圆相切,求证:;(3)设椭圆:,若、分别是、上的动点,且,求证:到直线的距离是定值.-6-8.如图,椭圆C:(a>b>0)的离心率为,其左焦点到点P(2,1)的距离为.不过原点O的直线l与C相交于A,B两点,且线段AB被直

5、线OP平分.(Ⅰ)求椭圆C的方程;(Ⅱ)求ABP的面积取最大时直线l的方程.9.在平面直角坐标系中,是抛物线的焦点,是抛物线上位于第一象限内的任意一点,过三点的圆的圆心为,点到抛物线的准线的距离为.(Ⅰ)求抛物线的方程;(Ⅱ)是否存在点,使得直线与抛物线相切于点若存在,求出点的坐标;若不存在,说明理由;(Ⅲ)若点的横坐标为,直线与抛物线有两个不同的交点,与圆有两个不同的交点,求当时,的最小值.10.如图,椭圆,动圆.点分别为的左、右顶点,与相交于四点(1)求直线与直线交点的轨迹方程;(2)设动圆与相交于四点,其中,.若矩形与矩形的面积相等,证明:为定值21世纪教育网11.设

6、抛物线的焦点为,准线为,,已知以为圆心,为半径的圆交于两点;(1)若,的面积为;求的值及圆的方程;(2)若三点在同一直线上,直线与平行,且与只有一个公共点,-6-求坐标原点到距离的比值.12.设椭圆的左、右顶点分别为,点P在椭圆上且异于两点,为坐标原点.(Ⅰ)若直线与的斜率之积为,求椭圆的离心率;(Ⅱ)若,证明:直线的斜率满足.13.已知三点O(0,0),A(-2,1),B(2,1),曲线C上任意一点M(x,y)满足.(1)求曲线C的方程;(2)动点Q(x0,y0)(-2<x0<2)在曲线C上,曲线C在点Q处的切线为l向:是否存在定点P(0,t)(t<0),使得l与PA,P

7、B都不相交,交点分别为D,E,且△QAB与△PDE的面积之比是常数?若存在,求t的值。若不存在,说明理由。14.如图,分别是椭圆的左,右焦点,过点作轴的垂线交椭圆的上半部分于点,过点作直线的垂线交直线于点;(I)若点的坐标为;求椭圆的方程;(II)证明:直线与椭圆只有一个交点。15.如图,动点到两定点、构成,且,设动点的轨迹为。(Ⅰ)求轨迹的方程;(Ⅱ)设直线与轴交于点,与轨迹相交于点,且,求的取值范围.16.已知为正实数,为自然数,抛物线与轴正半轴相交于点,设为该抛物线在点处的切线在轴上的截距。(Ⅰ)用和表示;-

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。