2.1.1椭圆及-其标准方程

2.1.1椭圆及-其标准方程

ID:16173282

大小:334.00 KB

页数:12页

时间:2018-08-08

2.1.1椭圆及-其标准方程_第1页
2.1.1椭圆及-其标准方程_第2页
2.1.1椭圆及-其标准方程_第3页
2.1.1椭圆及-其标准方程_第4页
2.1.1椭圆及-其标准方程_第5页
资源描述:

《2.1.1椭圆及-其标准方程》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2.1.1椭圆的标准方程一预习目标理解椭圆的定义,掌握椭圆的标准方程的推导及标准方程.二预习内容1.什么叫做曲线的方程?求曲线方程的一般步骤是什么?其中哪几个步骤必不可少?.2.圆的几何特征是什么?你能否可类似地提出一些轨迹命题作广泛的探索?3.椭圆的定义:---------------------------------------------------------------- 轨迹叫做椭圆.这两个定点叫做椭圆的-------------,两焦点的距离叫做 ----------------。4

2、.椭圆标准方程的推导:①建系;以-----------为轴,-----------  为轴,建立直角坐标系,则的坐标分别为:--------------------②写出点集;设P()为椭圆上任意一点,根据椭圆定义知: ------------------------------③坐标化;④化简(注意根式的处理和令a2-c2=b2)   类似的,焦点在-----轴上的椭圆方程为 :--------------------------  其中焦点坐标为:------------------------

3、--三、提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中疑惑点疑惑内容课内探究学案一、学习目标1..通过对椭圆概念的引入与标准方程的推导,培养学生分析探索能力,增强运用坐标法解决几何问题的能力。2通过对椭圆标准方程的推导的教学,可以提高对各种知识的综合运用能力.重点:椭圆的定义的理解及其标准方程记忆难点:椭圆标准方程的推导二、学习过程1.思考:(1)动点是在怎样的条件下运动的?(2)动点运动出的轨迹是什么?得出结论:在平面上到两个定点F1,F2距离之和等于定值2a的点的轨迹为

4、2.推导椭圆的标准方程.1)建系:以F1,F2所在直线为x轴,线段F1F2的中点为原点建立直角坐标系,并设椭圆上任意一点的坐标为M(x,y),设两定点坐标为:F1(-c,0),F2(c,0),2)则M满足:

5、MF1

6、+

7、MF2

8、=2a,思考:我们要化简方程就是要化去方程中的根式,你学过什么办法?a4-2a2cx+c2x2=a2x2-2a2cx+a2c2+a2y2,整理得:(a2-c2)x2+a2y2=a2(a2-c2).b2=a2-c2得:3.例题例1已知椭圆两个焦点的坐标分别是,,并且经过点,求它

9、的标准方程.设椭圆的标准方程为--------------------,因点在椭圆上,代入化简可得标准方程。例2如图,在圆上任取一点,过点作轴的垂线段,为垂足.当点在圆上运动时,线段的中点的轨迹是什么?分析:点在圆上运动,由点移动引起点的运动,则称点是点的伴随点,因点为线段的中点,则点的坐标可由点来表示,从而能求点的轨迹方程例3如图,设,的坐标分别为,.直线,相交于点,且它们的斜率之积为,求点的轨迹方程.分析:若设点,则直线,的斜率就可以用含的式子表示,由于直线,的斜率之积是,因此,可以求出之间的关

10、系式,即得到点的轨迹方程.三、反思总结1.椭圆方程得标准形式为:2.求动点轨迹方程的步骤是什么?四、当堂检测1.求适合下列条件的椭圆的标准方程: (1)两个焦点的坐标分别是(-4,0),(4,0),椭圆上一点P到两焦点距离的和等于10; (2)两个焦点的坐标分别是(0,-2),(0,2),并且椭圆经过点2.平面内两个定点的距离为8,动点M到两个定点的距离的和为10,求动点M的轨迹方程。课后练习与提高    A、5    B、5或8  C、3或5   D、202、如果方程x2+ky2=2表示焦点在y轴

11、上的椭圆,那么实数k的取值范围是()A、(0,+∞)   B、(0,2)   C、(1,+∞)     D、(0,1)           A、2   B、3   C、5   D、7     A、2a    B、4a    C、8a     D、2a+2b 5、若关于x、y的方程x2sinα-y2cosα=1所表示的曲线是椭圆,则方程(x+cosα)2+(y+sinα)2=1所表  示的圆的圆心在()  A、第一象限 B、第二象限 C、第三象限 D、第四象限 6、已知椭圆的焦点是F1(-1,0),F

12、2(1,0),点P为椭圆上一点,且

13、F1F2

14、是

15、PF1

16、与

17、PF2

18、的等  差中项,则椭圆的方程是( )         7、已知椭圆上一点P到其一个焦点的距离为3,则点P到另一个焦点的距离为()  A、2  B、3    C、5    D、7 8、如果椭圆E:4x2+y2=k上两点间的距离最大是8,则k值为()  A、32   B、16  C、8  D、4 9、已知F1、F2是椭圆的两焦点,过点F2的直线交椭圆于点A、B,若

19、AB

20、=5,则

21、AF1

22、+

23、BF1

24、的

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。