欢迎来到天天文库
浏览记录
ID:15969386
大小:767.13 KB
页数:10页
时间:2018-08-06
《2018版高中数学北师大版必修二学案第二章 章末复习课(二) 》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2017-2018学年高中数学北师大版必修2学案学习目标 1.整合知识结构,梳理知识网络,进一步巩固、深化所学知识.2.培养综合运用知识解决问题的能力,能灵活、熟练运用待定系数法求解圆的方程,能解决直线与圆的综合问题,并学会运用数形结合的数学思想.1.圆的方程(1)圆的标准方程:________________________.(2)圆的一般方程:________________________.2.点和圆的位置关系设点P(x0,y0)及圆的方程(x-a)2+(y-b)2=r2.(1)(x0-a)2+(y0-b)
2、2>r2⇔点P________.(2)(x0-a)2+(y0-b)2r1+r2d=r1+r2
3、r1-r2
4、5、r1-r26、d<7、r1-r28、5.9、求圆的方程时常用的四个几何性质102017-2018学年高中数学北师大版必修2学案6.与圆有关的最值问题的常见类型(1)形如μ=形式的最值问题,可转化为动直线斜率的最值问题.(2)形如t=ax+by形式的最值问题,可转化为动直线截距的最值问题.(3)形如(x-a)2+(y-b)2形式的最值问题,可转化为动点到定点距离的平方的最值问题.7.计算直线被圆截得的弦长的常用方法(1)几何方法运用弦心距(即圆心到直线的距离)、弦长的一半及半径构成直角三角形计算.(2)代数方法运用根与系数的关系及弦长公式10、AB11、=12、xA-x13、B14、=.注:圆的弦长、弦心距的计算常用几何方法.8.空间中两点的距离公式空间中点P1(x1,y1,z1),点P2(x2,y2,z2)之间的距离15、P1P216、=________________________.类型一 求圆的方程例1 根据条件求下列圆的方程.(1)求经过A(6,5),B(0,1)两点,并且圆心在直线3x+10y+9=0上的圆的方程;(2)求半径为,圆心在直线y=2x上,被直线x-y=0截得的弦长为4的圆的方程. 反思与感悟 102017-2018学年高中数学北师大版必修2学案求圆的方程17、主要是根据圆的标准方程和一般方程,利用待定系数法求解,采用待定系数法求圆的方程的一般步骤为:第一步:选择圆的方程的某一形式.第二步:由题意得a,b,r(或D,E,F)的方程(组).第三步:解出a,b,r(或D,E,F).第四步:代入圆的方程.注:解题时充分利用圆的几何性质可获得解题途径,减少运算量,例如:圆的切线垂直于经过切点的半径;圆心与弦的中点连线垂直于弦;当两圆相交时,连心线垂直平分两圆的公共弦;当两圆相切时,连心线过切点等.跟踪训练1 如图所示,圆C与x轴相切于点T(1,0),与y轴正半轴交于两点A,B(18、B在A的上方),且19、AB20、=2,则圆C的标准方程为________.类型二 直线与圆的位置关系例2 已知点M(3,1),直线ax-y+4=0及圆(x-1)2+(y-2)2=4.(1)求过M点的圆的切线方程;(2)若直线ax-y+4=0与圆相切,求a的值;(3)若直线ax-y+4=0与圆相交于A,B两点,且弦AB的长为2,求a的值. 反思与感悟 当直线与圆相交时,常涉及到弦长问题,弦长的计算有以下两种思路(1)代数方法:将直线和圆的方程联立得方程组,消元后得到一个一元二次方程,在判别式Δ>0的前提下21、,可利用根与系数的关系求弦长.(2)几何方法:若弦心距为d,圆半径为r,则弦长为l=2.解决直线与圆相交问题时,常利用几何方法,即构造直角三角形,利用勾股定理,当直线与圆相切时,圆心到直线的距离等于半径,圆心和切点的连线垂直于切线.102017-2018学年高中数学北师大版必修2学案跟踪训练2 已知点P(0,5)及圆C:x2+y2+4x-12y+24=0.(1)若直线l过点P,且被圆C截得的线段长为4,求l的方程;(2)求过P点的圆C弦的中点的轨迹方程. 类型三 圆与圆的位置关系例3 已知两圆x2+22、y2-2x-6y-1=0和x2+y2-10x-12y+m=0.(1)m取何值时两圆外切?(2)m取何值时两圆内切?(3)当m=45时,求两圆的公共弦所在直线的方程和公共弦的长. 跟踪训练3 已知两个圆C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直线l:x+2y=0,求经过C1和C2的交点且和l相切的圆的方程. 类型四 数形结合思想
5、r1-r2
6、d<
7、r1-r2
8、5.
9、求圆的方程时常用的四个几何性质102017-2018学年高中数学北师大版必修2学案6.与圆有关的最值问题的常见类型(1)形如μ=形式的最值问题,可转化为动直线斜率的最值问题.(2)形如t=ax+by形式的最值问题,可转化为动直线截距的最值问题.(3)形如(x-a)2+(y-b)2形式的最值问题,可转化为动点到定点距离的平方的最值问题.7.计算直线被圆截得的弦长的常用方法(1)几何方法运用弦心距(即圆心到直线的距离)、弦长的一半及半径构成直角三角形计算.(2)代数方法运用根与系数的关系及弦长公式
10、AB
11、=
12、xA-x
13、B
14、=.注:圆的弦长、弦心距的计算常用几何方法.8.空间中两点的距离公式空间中点P1(x1,y1,z1),点P2(x2,y2,z2)之间的距离
15、P1P2
16、=________________________.类型一 求圆的方程例1 根据条件求下列圆的方程.(1)求经过A(6,5),B(0,1)两点,并且圆心在直线3x+10y+9=0上的圆的方程;(2)求半径为,圆心在直线y=2x上,被直线x-y=0截得的弦长为4的圆的方程. 反思与感悟 102017-2018学年高中数学北师大版必修2学案求圆的方程
17、主要是根据圆的标准方程和一般方程,利用待定系数法求解,采用待定系数法求圆的方程的一般步骤为:第一步:选择圆的方程的某一形式.第二步:由题意得a,b,r(或D,E,F)的方程(组).第三步:解出a,b,r(或D,E,F).第四步:代入圆的方程.注:解题时充分利用圆的几何性质可获得解题途径,减少运算量,例如:圆的切线垂直于经过切点的半径;圆心与弦的中点连线垂直于弦;当两圆相交时,连心线垂直平分两圆的公共弦;当两圆相切时,连心线过切点等.跟踪训练1 如图所示,圆C与x轴相切于点T(1,0),与y轴正半轴交于两点A,B(
18、B在A的上方),且
19、AB
20、=2,则圆C的标准方程为________.类型二 直线与圆的位置关系例2 已知点M(3,1),直线ax-y+4=0及圆(x-1)2+(y-2)2=4.(1)求过M点的圆的切线方程;(2)若直线ax-y+4=0与圆相切,求a的值;(3)若直线ax-y+4=0与圆相交于A,B两点,且弦AB的长为2,求a的值. 反思与感悟 当直线与圆相交时,常涉及到弦长问题,弦长的计算有以下两种思路(1)代数方法:将直线和圆的方程联立得方程组,消元后得到一个一元二次方程,在判别式Δ>0的前提下
21、,可利用根与系数的关系求弦长.(2)几何方法:若弦心距为d,圆半径为r,则弦长为l=2.解决直线与圆相交问题时,常利用几何方法,即构造直角三角形,利用勾股定理,当直线与圆相切时,圆心到直线的距离等于半径,圆心和切点的连线垂直于切线.102017-2018学年高中数学北师大版必修2学案跟踪训练2 已知点P(0,5)及圆C:x2+y2+4x-12y+24=0.(1)若直线l过点P,且被圆C截得的线段长为4,求l的方程;(2)求过P点的圆C弦的中点的轨迹方程. 类型三 圆与圆的位置关系例3 已知两圆x2+
22、y2-2x-6y-1=0和x2+y2-10x-12y+m=0.(1)m取何值时两圆外切?(2)m取何值时两圆内切?(3)当m=45时,求两圆的公共弦所在直线的方程和公共弦的长. 跟踪训练3 已知两个圆C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直线l:x+2y=0,求经过C1和C2的交点且和l相切的圆的方程. 类型四 数形结合思想
此文档下载收益归作者所有