万有引力双星问题

万有引力双星问题

ID:15746112

大小:107.50 KB

页数:5页

时间:2018-08-05

万有引力双星问题_第1页
万有引力双星问题_第2页
万有引力双星问题_第3页
万有引力双星问题_第4页
万有引力双星问题_第5页
资源描述:

《万有引力双星问题》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、双星问题1.2010·重庆·16月球与地球质量之比约为1:80,有研究者认为月球和地球可视为一个由两质点构成的双星系统,他们都围绕月球连线上某点O做匀速圆周运动。据此观点,可知月球与地球绕O点运动生物线速度大小之比约为A.1:6400B.1:80C.80:1D:6400:1【答案】C【解析】月球和地球绕O做匀速圆周运动,它们之间的万有引力提供各自的向心力,则地球和月球的向心力相等。且月球和地球和O始终共线,说明月球和地球有相同的角速度和周期。因此有,所以,线速度和质量成反比,正确答案C。2、(04全国老课程

2、卷)16.我们的银河系的恒星中大约四分之一是双星。某双星由质量不等的星体S1和S2构成,两星在相互之间的万有引力作用下绕两者连线上某一定点C做匀速圆周运动。由于文观察测得其运动周期为T,S1到C点的距离为r1,S1和S2的距离为r,已知引力常量为G。由此可求出S2的质量为D()A.B.C.D.3.广西桂林十八中2010届高三第三次月考物理试卷宇宙中存在一些质量相等且离其他恒星较远的四颗星组成的四星系统,通常可忽略其他星体对它们的引力作用.设四星系统中每个星体的质量均为m,半径均为R,四颗星稳定分布在边长为的

3、正方形的四个顶点上.已知引力常量为G.关于四星系统,下列说法错误的是(B)A.四颗星围绕正方形对角线的交点做匀速圆周运动B.四颗星的轨道半径均为C.四颗星表面的重力加速度均为D.四颗星的周期均为4.(04全国卷Ⅳ17)我们的银河系的恒星中大约四分之一是双星.某双星由质量不等的星体S1和S2构成,两星在相互之间的万有引力作用下绕两者连线上某一定点C做匀速圆周运动.由天文观察测得其运动周期为T,S1到C点的距离为r1,S1和S2的距离为r,已知引力常量为G.由此可求出S2的质量为()A.B.C.D.答案D

4、解析双星的运动周期是一样的,选S1为研究对象,根据牛顿第二定律和万有引力定律得,则m2=.故正确选项D正确.5.(06天津理综25)神奇的黑洞是近代引力理论所预言的一种特殊天体,探寻黑洞的方案之一是观测双星系统的运动规律.天文学家观测河外星系大麦哲伦云时,发现了LMCX-3双星系统,它由可见星A和不可见的暗星B构成.两星视为质点,不考虑其他天体的影响,A、B围绕两者连线上的O点做匀速圆周运动,它们之间的距离保持不变,如图所示.引力常量为G,由观测能够得到可见星A的速率v和运行周期T.(1)可见星A所受暗

5、星B的引力FA可等效为位于O点处质量为m′的星体(视为质点)对它的引力,设A和B的质量分别为m1、m2,试求m′(用m1、m2表示);(2)求暗星B的质量m2与可见星A的速率v、运行周期T和质量m1之间的关系式;(3)恒星演化到末期,如果其质量大于太阳质量ms的2倍,它将有可能成为黑洞.若可见星A的速率v=2.7×105m/s,运行周期T=4.7π×104s,质量m1=6ms,试通过估算来判断暗星B有可能是黑洞吗?(G=6.67×10-11N·m2/kg2,ms=2.0×1030kg)答案(1)(2)

6、(3)暗星B有可能是黑洞解析(1)设A、B的圆轨道半径分别为r1、r2,由题意知,A、B做匀速圆周运动的角速度相同,设其为ω.由牛顿运动定律,有FA=m1ω2r1FB=m2ω2r2FA=FB设A、B之间的距离为r,又r=r1+r2,由上述各式得r=①由万有引力定律,有FA=将①代入得FA=G令FA=比较可得m′=②(2)由牛顿第二定律,有③又可见星A的轨道半径r1=④由②③④式解得⑤(3)将m1=6ms代入⑤式,得代入数据得⑥设m2=nms(n>0),将其代入⑥式,得⑦可见,的值随n的增大而增大,试令

7、n=2,得⑧若使⑦式成立,则n必大于2,即暗星B的质量m2必大于2ms,由此得出结论:暗星B有可能是黑洞.6.2010·全国卷Ⅰ·25如右图,质量分别为m和M的两个星球A和B在引力作用下都绕O点做匀速周运动,星球A和B两者中心之间距离为L。已知A、B的中心和O三点始终共线,A和B分别在O的两侧。引力常数为G。⑴求两星球做圆周运动的周期。⑵在地月系统中,若忽略其它星球的影响,可以将月球和地球看成上述星球A和B,月球绕其轨道中心运行为的周期记为T1。但在近似处理问题时,常常认为月球是绕地心做圆周运动的,这样算

8、得的运行周期T2。已知地球和月球的质量分别为5.98×1024kg和7.35×1022kg。求T2与T1两者平方之比。(结果保留3位小数)【答案】⑴⑵1.01【解析】⑴A和B绕O做匀速圆周运动,它们之间的万有引力提供向心力,则A和B的向心力相等。且A和B和O始终共线,说明A和B有相同的角速度和周期。因此有,,连立解得,对A根据牛顿第二定律和万有引力定律得化简得⑵将地月看成双星,由⑴得将月球看作绕地心做圆周运动,根

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。