spss 因子分析和主成分分析

spss 因子分析和主成分分析

ID:15437326

大小:930.50 KB

页数:28页

时间:2018-08-03

spss   因子分析和主成分分析_第1页
spss   因子分析和主成分分析_第2页
spss   因子分析和主成分分析_第3页
spss   因子分析和主成分分析_第4页
spss   因子分析和主成分分析_第5页
资源描述:

《spss 因子分析和主成分分析》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、实验课:因子分析实验目的理解主成分(因子)分析的基本原理,熟悉并掌握SPSS中的主成分(因子)分析方法及其主要应用。因子分析一、基础理论知识1概念因子分析(Factoranalysis):就是用少数几个因子来描述许多指标或因素之间的联系,以较少几个因子来反映原资料的大部分信息的统计学分析方法。从数学角度来看,主成分分析是一种化繁为简的降维处理技术。主成分分析(Principalcomponentanalysis):是因子分析的一个特例,是使用最多的因子提取方法。它通过坐标变换手段,将原有的多个相关变量,做线性变化,转换为另外一组

2、不相关的变量。选取前面几个方差最大的主成分,这样达到了因子分析较少变量个数的目的,同时又能与较少的变量反映原有变量的绝大部分的信息。两者关系:主成分分析(PCA)和因子分析(FA)是两种把变量维数降低以便于描述、理解和分析的方法,而实际上主成分分析可以说是因子分析的一个特例。2特点(1)因子变量的数量远少于原有的指标变量的数量,因而对因子变量的分析能够减少分析中的工作量。(2)因子变量不是对原始变量的取舍,而是根据原始变量的信息进行重新组构,它能够反映原有变量大部分的信息。(3)因子变量之间不存在显著的线性相关关系,对变量的分析

3、比较方便,但原始部分变量之间多存在较显著的相关关系。(4)因子变量具有命名解释性,即该变量是对某些原始变量信息的综合和反映。在保证数据信息丢失最少的原则下,对高维变量空间进行降维处理(即通过因子分析或主成分分析)。显然,在一个低维空间解释系统要比在高维系统容易的多。3类型根据研究对象的不同,把因子分析分为R型和Q型两种。当研究对象是变量时,属于R型因子分析;当研究对象是样品时,属于Q型因子分析。但有的因子分析方法兼有R型和Q型因子分析的一些特点,如因子分析中的对应分析方法,有的学者称之为双重型因子分析,以示与其他两类的区别。4分

4、析原理假定:有n个地理样本,每个样本共有p个变量,构成一个n×p阶的地理数据矩阵:当p较大时,在p维空间中考察问题比较麻烦。这就需要进行降维处理,即用较少几个综合指标代替原来指标,而且使这些综合指标既能尽量多地反映原来指标所反映的信息,同时它们之间又是彼此独立的。线性组合:记x1,x2,…,xP为原变量指标,z1,z2,…,zm(m≤p)为新变量指标(主成分),则其线性组合为:Lij是原变量在各主成分上的载荷无论是哪一种因子分析方法,其相应的因子解都不是唯一的,主因子解仅仅是无数因子解中之一。zi与zj相互无关;z1是x1,x2

5、,…,xp的一切线性组合中方差最大者,z2是与z1不相关的x1,x2,…的所有线性组合中方差最大者。则,新变量指标z1,z2,…分别称为原变量指标的第一,第二,…主成分。Z为因子变量或公共因子,可以理解为在高维空间中互相垂直的m个坐标轴。主成分分析实质就是确定原来变量xj(j=1,2,…,p)在各主成分zi(i=1,2,…,m)上的荷载lij。从数学上容易知道,从数学上也可以证明,它们分别是相关矩阵的m个较大的特征值所对应的特征向量。5分析步骤5.1确定待分析的原有若干变量是否适合进行因子分析(第一步)因子分析是从众多的原始变量

6、中重构少数几个具有代表意义的因子变量的过程。其潜在的要求:原有变量之间要具有比较强的相关性。因此,因子分析需要先进行相关分析,计算原始变量之间的相关系数矩阵。如果相关系数矩阵在进行统计检验时,大部分相关系数均小于0.3且未通过检验,则这些原始变量就不太适合进行因子分析。进行原始变量的相关分析之前,需要对输入的原始数据进行标准化计算(一般采用标准差标准化方法,标准化后的数据均值为0,方差为1)。SPSS在因子分析中还提供了几种判定是否适合因子分析的检验方法。主要有以下3种:巴特利特球形检验(BartlettTestofSpheri

7、city)反映象相关矩阵检验(Anti-imagecorrelationmatrix)KMO(Kaiser-Meyer-Olkin)检验(1)巴特利特球形检验该检验以变量的相关系数矩阵作为出发点,它的零假设H0为相关系数矩阵是一个单位阵,即相关系数矩阵对角线上的所有元素都为1,而所有非对角线上的元素都为0,也即原始变量两两之间不相关。巴特利特球形检验的统计量是根据相关系数矩阵的行列式得到。如果该值较大,且其对应的相伴概率值小于用户指定的显著性水平,那么就应拒绝零假设H0,认为相关系数不可能是单位阵,也即原始变量间存在相关性。(2

8、)反映象相关矩阵检验该检验以变量的偏相关系数矩阵作为出发点,将偏相关系数矩阵的每个元素取反,得到反映象相关矩阵。偏相关系数是在控制了其他变量影响的条件下计算出来的相关系数,如果变量之间存在较多的重叠影响,那么偏相关系数就会较小,这些变量越适合进行因子分析。(3)

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。