资源描述:
《bp神经网络预测妊娠期糖尿病胎儿体重的研究》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、BP神经网络预测妊娠期糖尿病胎儿体重的研究作者:宋鹤兰,张东枚,李丽霞,李筠,曾慧韵,丁淑瑾,赵曼丹,骆婕【摘要】目的探讨BP神经网络预测妊娠期糖尿病(GDM)胎儿出生体重的价值。方法将306例足月、单胎、无妊娠其它合并症及并发症的GDM孕妇随机分为训练组(200例,男女胎儿分别为106例、94例)和验证组(106例,男女胎儿分别为56例、50例)。训练组分别选取不同参数构建3个神经网络:(1)孕妇参数法:包括孕妇体重指数(BMI)、腹围、宫高、孕期增加体重、空腹血糖(FBS)、餐后2h血糖(PBS
2、)、糖化血红蛋白(GHbA1c)等7项参数作为输入节点;(2)胎儿参数法:用胎儿的双顶径(BPD)、股骨长度(FL)、头围(HC)、腹围(AC)、腹径(AD)、股骨皮下脂肪厚度(FTSTT)、胎儿腹壁脂肪层厚度(FFL)等7项参数作为输入节点;(3)联合参数法:将孕妇及胎儿的参数作为输入节点。神经网络构建完成后以106例验证组来分别测试3种网络法的误差率和符合率。结果联合参数法准确率最高为86.20%,胎儿参数法为71.30%,孕妇参数法为64.50%。结论BP神经网络预测胎儿体重有很好的应用前景。
3、选取合适的孕妇及胎儿参数建立网络可提高预测的准确性。【关键词】妊娠期糖尿病;胎儿体重;预测;BP神经网络13 Abstract:ObjectiveToinvestigatethevalueofBPneuralnetworkinpredictingfetalbirthweightinpatientswithgestationaldiabetesmellitus(GDM).Methods306pregnantwomenoffulltermpregnancy,singlegestation,withn
4、oothercomplicationsofpregnancyandcomplicationsofGDM,wererandomlydividedintotraininggroup(200cases,including106malefetusesand94femalefetuses)andtestgroup(106cases,including56malefetusesand50femalefetuses).Traininggroupwereselectedtobuildthreedifferentne
5、uralnetworkswithdifferentparameters,(l)Pregnantwomenparametermethod:includingbodymassindex(BMI),abdominalcircumference,fundalheight,pregnancyweightgain,fastingbloodsugar(FBS),postprandialbloodsugar(PBS),glycosylatedhemoglobin(GHbA1c),thesesevenparamete
6、rswereusedasinputnodes.(2)Fetalparametermethod:includingfetalbiparietaldiameter(BPD),femurlength(FL),headcircumference(HC),abdominalcircumference(AC),abdominaldiameter(AD),femoralthighsofttissuethickness(FTSTT),andfetalabdominalwallfatlayer(FFL),theses
7、evenparameterswereusedasinputnodes.(3)Jointparametermethod:theabovematernalandfetalparameterswereusedasinputnodes.Afterestablishmentofneuralnetworks,13thedataof106casesoftestgroupwasusedtoverifiedpredictionerrorrateandpredictioncoincidencerateofthethre
8、eneuralnetworksinpredictingfetalbirthweight.ResultsJointparametermethodwasthemostaccurate,theaccuracyrateofthismethodwasupto86.20%,andtheaccuracyratesoffetalparametersmethodandmotherparametermethodwere71.30%and64.50%respectively.Conclus