欢迎来到天天文库
浏览记录
ID:14750403
大小:235.00 KB
页数:11页
时间:2018-07-30
《矢量图解运动问题 (1)》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、专题4 矢量图解运动问题文/沈 晨教你一手 一、矢量加、减运算的图示矢量的加、减运算,即矢量的合成与分解是处理物理问题必备的数学方法.矢量加减依据平行四边形定则,也可简化为三角形(多边形)法.其图解方法如图4-1,若已知矢量A、B、(如图4-1(a)),当求R=A+B,即作矢量的加法时,可将A、B两矢量依次首(有向线段箭头)尾(有向线段未端)相接后,由A的尾画到B的首的有向线段即为R(如图4-1(b));当求R=A-B,即作矢量的减法时,通常将表示A、B两矢量的有向线段未端重合,即从同一点出发分别画出两相减矢量,由B的有向线段箭头画到A矢量箭头的有向线段即为R(如图4-1(c)).运用这
2、种方法可以进行多个矢量的连续相加或相减.我们可归纳如下:图4-1图解方法求矢量和:相加各矢量依次首尾相接后,连接第一个“加数”尾与最后一个“加数”头的有向线段即为各矢量之和.图解方法求矢量差:末端共点地分别作相减二矢量,连接两箭头、方向指向“被减数”的有向线段即为该二矢量之差.二、运动的合成与分解当物体实际发生的运动较复杂时,我们可将其等效为同时参与几个简单的运动,前者称作合运动,后者则称作物体实际运动的分运动.这种双向的等效操作过程叫运动的合成与分解,是研究复杂运动的重要方法.运动的合成与分解遵循如下原理:1.独立性原理构成一个合运动的几个分运动是彼此独立、互不相干的,
3、物体的任意一个分运动,都按其自身规律进行,不会因有其他分运动的存在而发生改变.2.等时性原理合运动是同一物体在同一时间内同时完成几个分运动的结果,对同一物体同时参与的几个运动进行合成才有意义.3.矢量性原理描述运动状态的位移、速度、加速度等物理量都是矢量,对运动进行合成与分解时应按矢量法则即平行四边形定则作上述物理量的运算.11将一个复杂运动分解为几个分运动,通常有两种方法:⑴引入中介参照系.例如船过河的运动,是以静止的河岸为参考的一个复杂运动,我们可以取一个动参考物——运动的河水为中介,那么,船的运动可分解为船相对水的运动与水相对岸的运动.若设质点A对静止参考系C的速度(绝对
4、速度)为vAC,动参考系B对C的速度(牵连速度)为vBC,而A对动参考系B的速度(相对速度)为vAB,则有vAC=vAB+vBC,vAB=vAC-vBC.同样地,我们可以按这种方法进行位移或加速度的合成与分解,例如,aAC=aAB+aBC,aAB=aAC-aBC.注意矢量运算式中下标的规律性.⑵依据实际效果分解运动.例如一架飞机以速度v与水平成θ角斜向上飞行,实际效果是在上升的同时水平向前移动了,我们可将飞机的运动分解为竖直方向与水平方向的两个分运动,若这两个分运动的速度依次为v1和v2,则有v=v1+v2.处理相对运动等复杂运动时,涉及速度、位移或加速度等矢量的加减运算,若用矢量图助解常
5、会收到奇效.例1假定某日刮正北风,风速为u,一运动员在风中跑步,他对地面的速度大小是v,试问他向什么方向跑的时候,他会感到风是从自己的正右侧吹来的?这种情况在什么条件下成为无解?在无解的情况下,运动员向什么方向跑时,感到风与他跑的方向所成夹角最大?分析与解设风相对于人的速度(即运动员感到的风速)为V,根据题给条件,有u=V+v.三个速度矢量中,u大小、方向均确定,v大小一定,V与v两矢量互相垂直(所谓正右侧),故可断定三个矢量所构成的满足题意要求的关系三角形应为直角三角形.如图4-2,取一点O,先作矢量u,以其矢端为圆心,表示v大小的线段长为半径作一圆,自O点向圆引切线OA,则矢量
6、三角形△OO′A即为符合题意要求的u、V、v关系.由图显见,当运动员朝南偏西θ=arccos(v/u)方向以速率v奔跑时会感觉风从自己右侧吹来,并且在v<u时才可能有这种感觉.若v>u,绝对风速、风相对人的速度及人奔跑速度关系如图4-3,在△OO′A′中运用正弦定理有(v/sinβ)=(u/sinα),可知当β=(π/2)时,α=arcsin(u/v)为最大,即在运动员向西偏南arcsin(u/v)方向奔跑时感觉风与自己跑的方向所成夹角最大.图4-2图4-311例2一只木筏离开河岸,初速度为v,方向垂直于岸,划行路线如图4-4虚线所示,经过时间T,木筏划到路线上A处,河水速度恒定为
7、u,且木筏在水中划行方向不变.用作图法找到2T、3T……时刻此木筏在航线上的确切位置.图4-4分析与解设木筏相对于水的速度为V,则离岸时,V=v-u,其矢量关系如图4-5(a)所示,该图同时给出了此后木筏复合运动的速度情况:木筏相对于水的速度V方向不变、大小是变化的;木筏的绝对速度v大小、方向均有变化.故而我们看到木筏的运动轨迹为一曲线.现如图4-5中(b)所示,连接OA的有向线段是时间T内
此文档下载收益归作者所有