有限元法发展综述

有限元法发展综述

ID:14534685

大小:29.00 KB

页数:5页

时间:2018-07-29

有限元法发展综述_第1页
有限元法发展综述_第2页
有限元法发展综述_第3页
有限元法发展综述_第4页
有限元法发展综述_第5页
资源描述:

《有限元法发展综述》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、有限元法发展综述随着现代科学技术的发展,人们正在不断建造更为快速的交通工具、更大规模的建筑物、更大跨度的桥梁、更大功率的发电机组和更为精密的机械设备。这一切都要求工程师在设计阶段就能精确地预测出产品和工程的技术性能,需要对结构的静、动力强度以及温度场、流场、电磁场和渗流等技术参数进行分析计算。例如分析计算高层建筑和大跨度桥梁在地震时所受到的影响,看看是否会发生破坏性事故;分析计算核反应堆的温度场,确定传热和冷却系统是否合理;分析涡轮机叶片内的流体动力学参数,以提高其运转效率。这些都可归结为求解物理问题的控制偏微分方程式往往是不可能的。近年来在计算机技术和数值分析方法支持下发展起来的有限元分析(

2、FEA,FiniteElementAnalysis)方法则为解决这些复杂的工程分析计算问题提供了有效的途径。有限元法是一种高效能、常用的计算方法.有限元法在早期是以变分原理为基础发展起来的,所以它广泛地应用于以拉普拉斯方程和泊松方程所描述的各类物理场中(这类场与泛函的极值问题有着紧密的联系)。自从1969年以来,某些学者在流体力学中应用加权余数法中的迦辽金法(Galerkin)或最小二乘法等同样获得了有限元方程,因而有限元法可应用于以任何微分方程所描述的各类物理场中,而不再要求这类物理场和泛函的极值问题有所联系.一、有限元法的孕育过程及诞生和发展大约在300年前,牛顿和莱布尼茨发明了积分法,证

3、明了该运算具有整体对局部的可加性。虽然,积分运算与有限元技术对定义域的划分是不同的,前者进行无限划分而后者进行有限划分,但积分运算为实现有限元技术准备好了一个理论基础。在牛顿之后约一百年,著名数学家高斯提出了加权余值法及线性代数方程组的解法。这两项成果的前者被用来将微分方程改写为积分表达式,后者被用来求解有限元法所得出的代数方程组。在18世纪,另一位数学家拉格郎日提出泛函分析。泛函分析是将偏微分方程改写为积分表达式的另一途经。在19世纪末及20世纪初,数学家瑞雷和里兹首先提出可对全定义域运用展开函数来表达其上的未知函数。1915年,数学家伽辽金提出了选择展开函数中形函数的伽辽金法,该方法被广泛

4、地用于有限元。1943年,数学家库朗德第一次提出了可在定义域内分片地使用展开函数来表达其上的未知函数。这实际上就是有限元的做法。所以,到这时为止,实现有限元技术的第二个理论基础也已确立。20世纪50年代,飞机设计师们发现无法用传统的力学方法分析飞机的应力、应变等问题。波音公司的一个技术小组,首先将连续体的机翼离散为三角形板块的集合来进行应力分析,经过一番波折后获得前述的两个离散的成功。20世纪50年代,大型电子计算机投入了解算大型代数方程组的工作,这为实现有限元技术准备好了物质条件。1960年前后,美国的R.W.Clough教授及我国的冯康教授分别独立地在论文中提出了“有限单元”,这样的名词。

5、此后,这样的叫法被大家接受,有限元技术从此正式诞生。1990年10月美国波音公司开始在计算机上对新型客机B-777进行“无纸设计”,仅用了三年半时间,于1994年4月第一架B-777就试飞成功,这是制造技术史上划时代的成就,其中在结构设计和评判中就大量采用有限元分析这一手段。在有限元分析的发展初期,由于其基本思想和原理的“简单”和“朴素”,以至于许多学术权威都对其学术价值有所鄙视,国际著名刊物JournalofAppliedMechanics许多年来都拒绝刊登有关于有限元分析的文章。然而现在,有限元分析已经成为数值计算的主流,不但国际上存在如ANSYS等数种通用有限元分析软件,而且涉及到有限元

6、分析的杂志也有几十种之多。二、有限元法的基本思想有限元方法与其他求解边值问题近似方法的根本区别在于它的近似性仅限于相对小的子域中。20世纪60年代初首次提出结构力学计算有限元概念的克拉夫(Clough)教授形象地将其描绘为:“有限元法=RayleighRitz法+分片函数”,即有限元法是RayleighRitz法的一种局部化情况。不同于求解(往往是困难的)满足整个定义域边界条件的允许函数的RayleighRitz法,有限元法将函数定义在简单几何形状(如二维问题中的三角形或任意四边形)的单元域上(分片函数),且不考虑整个定义域的复杂边界条件,这是有限元法优于其他近似方法的原因之一。有限元方法(F

7、EM)的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。