lecture05 how to defend yourself from a supersymmetric field theory

lecture05 how to defend yourself from a supersymmetric field theory

ID:14366446

大小:180.15 KB

页数:7页

时间:2018-07-28

lecture05 how to defend yourself from a supersymmetric field theory_第1页
lecture05 how to defend yourself from a supersymmetric field theory_第2页
lecture05 how to defend yourself from a supersymmetric field theory_第3页
lecture05 how to defend yourself from a supersymmetric field theory_第4页
lecture05 how to defend yourself from a supersymmetric field theory_第5页
资源描述:

《lecture05 how to defend yourself from a supersymmetric field theory》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、MITOpenCourseWarehttp://ocw.mit.edu8.821StringTheoryFall2008ForinformationaboutcitingthesematerialsorourTermsofUse,visit:http://ocw.mit.edu/terms.8.821F2008Lecture5:SUSYSelf-DefenseLecturer:McGreevySeptember22,2008Today’slecturewillteachyouenoughsupersymmetrytodefendyourselfagainstah

2、ostilesuper-symmetricfieldtheory,shouldyoumeetonedownadarkalleyway.Topicswillinclude1.SUSYrepresentationtheory,includingbasicideasregardingthealgebraandanexplanationofwhyN=4ismaximal(aproofduetoNahm)2.PropertiesofN=4SuperYang-Millstheory,suchasthespectrumandwhereitcomesfrominstringthe

3、ory.Beforeplungingin,wemightbeinclinedtowonder:whyissupersymmetrysowonderful?Inadditiontothedelightfulpropertiesthatwillbeexploredintheremainderofthiscourse,therearevariousreasonsarisingfrompureparticlephysics:forexample,itstabilizestheelectroweakhierarchy,changesthetrajectoryofRGflow

4、ssuchthatthegaugecouplingsunifyatveryhighenergies,andhalvestheexponentinthecosmologicalconstantproblem.Theseareissuesthatwewillnotexplorefurtherinthislecture.1SUSYRepresentationTheoryind=4Webeginwithaquickreviewofold-fashionedPoincaresymmetryind=4:1.1PoincaregroupRecallthattheisometr

5、ygroupofMinkowskispaceisthePoincaregroup,consistingoftranslations,rotations,andboosts.ThevariouschargesassociatedwiththesubgroupsofthePoincaregrouparequitefamiliarandarelistedbelowChargeSubgroupTranslationsPµR3,1Rotations/boostsMµνSO(3,1)∼(SU(2)×SU(2))1Luckilytherotation/boostpartoft

6、healgebraSO(3,1)decomposes(atleastinthesenseofthe“sloppyrepresentationtheory”thatwearedoingtoday)intotwocopiesofSU(2).WeareallfamiliarwithrepresentationsofSU(2),eachofwhicharelabeledbyahalf-integersi∈0,1/2,1,...;theproductoftwooftheserepsgivesusarepofSO(3,1):(s1,s2)Scalar(0,0)4-vecto

7、r(1/2,1/2)Symmetrictensor(1,1)Weylfermions(1/2,0),(0,1/2)Self-dual,anti-self-dualtensors(1,0),(0,1)Havingmasteredthisgroup,wewonderwhetherwecouldpossiblyhavealargerspacetimesymmetrygrouptodealwith,leadingustotheideaofenlargingthePoincaregroupbyaddingfermionicgenerators!1.2Supercharge

8、sLet’scallth

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。