欢迎来到天天文库
浏览记录
ID:14039019
大小:587.00 KB
页数:9页
时间:2018-07-25
《2.2.4平面与平面平行的性质》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、学校:临清实验高中学科:数学编写人:于凌云审稿人:邢玉兰王桂强2、2、4平面与平面平行的性质教案【教学目标】1、通过图形探究平面与平面平行的性质定理;2、熟练掌握平面与平面平行的性质定理的应用;3、进一步培养学生的空间想象能力,以及逻辑思维能力.【教学重难点】重点:通过直观感知,操作确认,概括并证明平面和平面平行的性质定理。难点:平面和平面平行的性质定理的证明和应用。【教学过程】1、教师引导学生借助长方体模型思考、交流得出课前预习学案中的结论结论:<1>结合长方体模型,可知:或平行或异面;<2>直线与平面平行的性质定理用文字语言表示为:如
2、果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行;<3>文字语言:如果两个平行平面同时和第三个平面相交,那么它们的交线平行;符号语言:;图形语言如图所示:<4>应用面面平行的性质定理的难点是:过某些点或直线作一个平面.应用线面平行性质定理的口诀:“见到面面平行,先过某些直线作两个平面的交线.”2、思考:如果平面,那么平面内的直线a和平面内的哪些直线平行?怎么找出这些直线?(教师引导学生借助长方体模型思考、交流得出结论)结论:过直线a做平面与平面相交,则交线和a平行.(在教师的启发下,师生共同概括完成上述结
3、论及证明过程,从而得到两个平面平行的性质定理)。3、平面和平面平行平行的性质定理定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行。符号表示:证明:教师指出:可以由平面与平面平行得出直线与直线平行4、平面和平面平行的性质定理应用例1:求证:夹在两个平行平面间的平行线段相等.(学生交流讨论形成结果)→首先要将文字语言转化为符号语言和图形语言:已知:,,,求证:。解析:利用什么定理?(平面与平面平行性质定理)关键是如何得到第三个相交平面。证明:因为AB∥CD,所以过AB、CD可作平面γ,且平面γ与平面α、平面β分别交于AD和BC,
4、因为α∥β,所以AD∥BC所以四边形ABCD是平行四边形所以点评:变式训练1:判断下列结论是否成立:①过平面外一点,有且仅有一个平面与已知平面平行;()②;()③平行于同一个平面的两条直线平行;()④两个平面都与一条直线平行,则这两个平面平行;()⑤一条直线与两个平行平面中的一个相交,则必与另一个相交。()例题2:已知:如下图,四棱锥S-ABCD底面为平行四边形,E、F分别为边AD、SB中点求证:EF∥平面SDC。解析:证线面平行,需证线线平行证明:方法一5、课堂小结:面面平行的性质定理及其它性质();转化思想.【板书设计】一、平面与平面
5、平行的性质定理[来源:学
6、科
7、网]二、例题例1变式1例2变式2【作业布置】习题2.2A组第6、7、题,B组第2题;2、2、4平面与平面平行的性质课前预习学案一、预习目标:通过图形探究平面与平面平行的性质定理二、预习内容:阅读教材第66—67页内容,然后回答问题(1)利用空间模型探究:如果两个平面平行,那么一个平面内的直线与另一个平面内的直线具有什么位置关系?(2)请同学们回忆线面平行的性质定理,然后结合模型探究面面平行的性质定理;(3)用三种语言描述平面与平面平行的性质定理;(4)应用面面平行的性质定理的难点在哪里?应用面面平行的性质定理
8、口诀是什么?三、提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中[来源:学科网ZXXK]疑惑点疑惑内容 课内探究学案一、学习目标1、通过图形探究平面与平面平行的性质定理;2、熟练掌握平面与平面平行的性质定理的应用;3、进一步培养学生的空间想象能力,以及逻辑思维能力.学习重点:通过直观感知,操作确认,概括并证明平面和平面平行的性质定理。学习难点:平面和平面平行的性质定理的证明和应用。二、学习过程1、教师引导学生借助长方体模型思考、交流得出课前预习学案中的结论结论:<1>结合长方体模型,可知:或平行或异面;<
9、2>直线与平面平行的性质定理用文字语言表示为:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行;<3>文字语言:如果两个平行平面同时和第三个平面相交,那么它们的交线平行;符号语言:;图形语言如图所示:<4>应用面面平行的性质定理的难点是:过某些点或直线作一个平面.应用线面平行性质定理的口诀:“见到面面平行,先过某些直线作两个平面的交线.”2、思考:如果平面,那么平面内的直线a和平面内的哪些直线平行?怎么找出这些直线?(教师引导学生借助长方体模型思考、交流得出结论)结论:过直线a做平面与平面相交,则交线和
10、a平行.(在教师的启发下,师生共同概括完成上述结论及证明过程,从而得到两个平面平行的性质定理)。3、平面与平面平行性质定理:讨论:①两个平面平行,其中一个平面内的直线与另一个平面有什么位置关系
此文档下载收益归作者所有