欢迎来到天天文库
浏览记录
ID:14033478
大小:198.50 KB
页数:21页
时间:2018-07-25
《理解有符号数和无符号数》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、理解有符号数和无符号数2008-09-2314:15负数在计算机中如何表示呢?这一点,你可能听过两种不同的回答。一种是教科书,它会告诉你:计算机用“补码”表示负数。可是有关“补码”的概念一说就得一节课,这一些我们需要在第6章中用一章的篇幅讲2进制的一切。再者,用“补码”表示负数,其实一种公式,公式的作用在于告诉你,想得问题的答案,应该如何计算。却并没有告诉你为什么用这个公式就可以和答案?另一种是一些程序员告诉你的:用二进制数的最高位表示符号,最高位是0,表示正数,最高位是1,表示负数。这种说法本身没错,可是
2、如果没有下文,那么它就是错的。至少它不能解释,为什么字符类型的-1用二进制表示是“11111111”(16进制为FF);而不是我们更能理解的“10000001”。(为什么说后者更好理解呢?因为既然说最高位是1时表示负数,那10000001不是正好是-1吗?)。让我们从头说起。1、你自已决定是否需要有正负。就像我们必须决定某个量使用整数还是实数,使用多大的范围数一样,我们必须自已决定某个量是否需要正负。如果这个量不会有负值,那么我们可以定它为带正负的类型。在计算机中,可以区分正负的类型,称为有符类型,无正负的
3、类型(只有正值),称为无符类型。数值类型分为整型或实型,其中整型又分为无符类型或有符类型,而实型则只有符类型。字符类型也分为有符和无符类型。比如有两个量,年龄和库存,我们可以定前者为无符的字符类型,后者定为有符的整数类型。2、使用二制数中的最高位表示正负。首先得知道最高位是哪一位?1个字节的类型,如字符类型,最高位是第7位,2个字节的数,最高位是第15位,4个字节的数,最高位是第31位。不同长度的数值类型,其最高位也就不同,但总是最左边的那位(如下示意)。字符类型固定是1个字节,所以最高位总是第7位。(红色
4、为最高位)单字节数:11111111双字节数:1111111111111111四字节数:11111111111111111111111111111111 当我们指定一个数量是无符号类型时,那么其最高位的1或0,和其它位一样,用来表示该数的大小。当我们指定一个数量是无符号类型时,此时,最高数称为“符号位”。为1时,表示该数为负值,为0时表示为正值。 3、无符号数和有符号数的范围区别。无符号数中,所有的位都用于直接表示该值的大小。有符号数中最高位用于表示正负,所以,当为正值时,该数的最大值就会变小。我们举一个字
5、节的数值对比:无符号数:11111111 值:2551*27+1*26+1*25+1*24+1*23+1*22+1*21+1*20有符号数:01111111 值:127 1*26+1*25+1*24+1*23+1*22+1*21+1*20 同样是一个字节,无符号数的最大值是255,而有符号数的最大值是127。原因是有符号数中的最高位被挪去表示符号了。并且,我们知道,最高位的权值也是最高的(对于1字节数来说是2的7次方=128),所以仅仅少于一位,最大值一下子减半。不过,有符号数的长处是它可
6、以表示负数。因此,虽然它的在最大值缩水了,却在负值的方向出现了伸展。我们仍一个字节的数值对比:无符号数: 0-----------------255有符号数: -128---------0----------127 同样是一个字节,无符号的最小值是0,而有符号数的最小值是-128。所以二者能表达的不同的数值的个数都一样是256个。只不过前者表达的是0到255这256个数,后者表达的是-128到+127这256个数。一个有符号的数据类型的最小值是如何计算出
7、来的呢?有符号的数据类型的最大值的计算方法完全和无符号一样,只不过它少了一个最高位(见第3点)。但在负值范围内,数值的计算方法不能直接使用1*26+1*25的公式进行转换。在计算机中,负数除为最高位为1以外,还采用补码形式进行表达。所以在计算其值前,需要对补码进行还原。这些内容我们将在第六章中的二进制知识中统一学习。这里,先直观地看一眼补码的形式:以我们原有的数学经验,在10进制中:1表示正1,而加上负号:-1表示和1相对的负值。那么,我们会很容易认为在2进制中(1个字节):00000001表示正1,则高位
8、为1后:10000001应该表示-1。然而,事实上计算机中的规定有些相反,请看下表:二进制值(1字节)十进制值10000000-12810000001-12710000010-12610000011-125......11111110-211111111-1 首先我们看到,从-1到-128,其二进制的最高位都是1(表中标为红色),正如我们前面的学。然后我们有些奇怪地发现,10000000并没有拿来表示-0;而10
此文档下载收益归作者所有