欢迎来到天天文库
浏览记录
ID:13929548
大小:794.00 KB
页数:10页
时间:2018-07-25
《高三数学一轮复习必备精品30:数列求和及数列实际问题》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、第30讲数列求和及数列实际问题备注:【高三数学一轮复习必备精品共42讲全部免费欢迎下载】一.【课标要求】1.探索并掌握一些基本的数列求前n项和的方法;2.能在具体的问题情境中,发现数列的数列的通项和递推关系,并能用有关等差、等比数列知识解决相应的实际问题。二.【命题走向】数列求和和数列综合及实际问题在高考中占有重要的地位,一般情况下都是出一道解答题,解答题大多以数列为工具,综合运用函数、方程、不等式等知识,通过运用逆推思想、函数与方程、归纳与猜想、等价转化、分类讨论等各种数学思想方法,这些题目都考察考生灵活运用数学知识分析问题
2、和解决问题的能力,它们都属于中、高档题目有关命题趋势:1.数列是一种特殊的函数,而不等式则是深刻认识函数和数列的有效工具,三者的综合题是对基础和能力的双重检验,在三者交汇处设计试题,特别是代数推理题是高考的重点;2.数列推理题是将继续成为数列命题的一个亮点,这是由于此类题目能突出考察学生的逻辑思维能力,能区分学生思维的严谨性、灵敏程度、灵活程度;3.数列与新的章节知识结合的特点有可能加强,如与解析几何的结合等;4.有关数列的应用问题也一直备受关注预测2010年高考对本将的考察为:1.可能为一道考察关于数列的推导能力或解决生产、
3、生活中的实际问题的解答题;2.也可能为一道知识交汇题是数列与函数、不等式、解析几何、应用问题上等联系的综合题,以及数列、数学归纳法等有机结合三.【要点精讲】1.数列求通项与和(1)数列前n项和Sn与通项an的关系式:an=。(2)求通项常用方法①作新数列法。作等差数列与等比数列;②累差叠加法。最基本的形式是:an=(an-an-1)+(an-1+an-2)+…+(a2-a1)+a1;③归纳、猜想法。(3)数列前n项和①重要公式:1+2+…+n=n(n+1);12+22+…+n2=n(n+1)(2n+1);13+23+…+n3=
4、(1+2+…+n)2=n2(n+1)2;②等差数列中,Sm+n=Sm+Sn+mnd;③等比数列中,Sm+n=Sn+qnSm=Sm+qmSn;④裂项求和将数列的通项分成两个式子的代数和,即an=f(n+1)-f(n),然后累加抵消掉中间的许多项,这种先裂后消的求和法叫裂项求和法。用裂项法求和,需要掌握一些常见的裂项,如:10、=-、n·n!=(n+1)!-n!、Cn-1r-1=Cnr-Cn-1r、=-等⑤错项相消法对一个由等差数列及等比数列对应项之积组成的数列的前n项和,常用错项相消法。,其中是等差数列,是等比数列,记,则,…⑥
5、并项求和把数列的某些项放在一起先求和,然后再求Sn。数列求通项及和的方法多种多样,要视具体情形选用合适方法⑦通项分解法:2.递归数列数列的连续若干项满足的等量关系an+k=f(an+k-1,an+k-2,…,an)称为数列的递归关系。由递归关系及k个初始值可以确定的一个数列叫做递归数列。如由an+1=2an+1,及a1=1,确定的数列即为递归数列递归数列的通项的求法一般说来有以下几种:(1)归纳、猜想、数学归纳法证明。(2)迭代法。(3)代换法。包括代数代换,对数代数,三角代数。(4)作新数列法。最常见的是作成等差数列或等比数
6、列来解决问题四.【典例解析】题型1:裂项求和例1.已知数列为等差数列,且公差不为0,首项也不为0,求和:。解析:首先考虑,则=。点评:已知数列为等差数列,且公差不为0,首项也不为0,下列求和也可用裂项求和法。例2.求。解析:,10点评:裂项求和的关键是先将形式复杂的因式转化的简单一些。题型2:错位相减法例3.设a为常数,求数列a,2a2,3a3,…,nan,…的前n项和。解析:①若a=0时,Sn=0;②若a=1,则Sn=1+2+3+…+n=;③若a≠1,a≠0时,Sn-aSn=a(1+a+…+an-1-nan),Sn=。例4.
7、已知,数列是首项为a,公比也为a的等比数列,令,求数列的前项和。解析:,①-②得:,点评:设数列的等比数列,数列是等差数列,则数列的前项和求解,均可用错位相减法。题型3:倒序相加例5.求。解析:。①又。②所以。点评:Sn表示从第一项依次到第n项的和,然后又将Sn表示成第n项依次反序到第一项的和,将所得两式相加,由此得到Sn的一种求和方法。10例6.设数列是公差为,且首项为的等差数列,求和:解析:因为,,。点评:此类问题还可变换为探索题形:已知数列的前项和,是否存在等差数列使得对一切自然数n都成立。题型4:其他方法例7.求数列1
8、,3+5,7+9+11,13+15+17+19,…前n项和。解析:本题实质是求一个奇数列的和。在该数列的前n项中共有个奇数,故。例8.求数列1,3+,32+,……,3n+的各项的和。解析:其和为(1+3+……+3n)+(+……+)==(3n+1-3-n)。题型5:数列综合问题
此文档下载收益归作者所有