欢迎来到天天文库
浏览记录
ID:13354227
大小:60.00 KB
页数:12页
时间:2018-07-22
《公司总结会老总发言稿》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、简述除草机器人的关键技术及其原理摘要:通过介绍国内外除草机器人的研究状况和除草机器人的基本组成机构,详细的解释了除草机器人的关键技术及其原理。最主要的是为了满足实时精确除草,需要较高的定位视觉精度视觉系统。最后指出了我国除草机器人的发展方向和前景。关键词:农业除草机器人关键技术原理农田中,通常采用机械设备来喷洒化学除草剂。在我国,主要是采用手动喷雾剂或机动喷雾剂施药除草。在美国,施药设备有喷杆喷雾剂、涂抹施药器具、粒状农药施药器具等。这些方法的缺点是对地面杂草目标没有识别能力,均匀施药,导致农药污染。喷雾设备一般都有雾滴飘逸现象。现有的涂抹施药器具虽
2、然没有雾滴飘逸,但它不能对低于庄稼高度的杂草施药。除草机器人的研究可以降低劳动强度,大幅度减少除草剂用量,有利于农林生态环境的保护[1]。本文主要是针对前人的研究成果,通过查阅国内外的一些文献主要介绍一下除草机器人的主要结构和工作过程。一、国内外农业除草机器人的研究情况随着农业劳动力成本的提高,许多发达国家广泛开展了农业机器人研究。近年,又开始了对除草机器人的研究。瑞典、丹麦荷兰等欧洲国家以及美国、日本等开展了杂草识别和除草机构的研究。国内对于除草机器人的研究正在起步,南京林业大学提出了构建自主除草机器人的构想并设计了原理样机,通过试验完成了机械臂的
3、运动控制。江苏大学则开展了割草机器人的避障行为以及组合导航研究[2]。英国科技人员开发的菜田除草机器人所使用的是一部摄像机和一台识别野草、蔬菜和土壤图像的计算机组合装置,利用摄像机扫描和计算机图像分析,层层推进除草作业。它可以全天候连续作业,除草时对土壤无侵蚀破坏。科学家还准备在此基础上,研究与之配套的除草机械来代替除草剂。收割机器人美国新荷兰农业机械公司投资250万美元研制一种多用途的自动化联合收割机器人,著名的机器人专家雷德·惠特克主持设计工作,他曾经成功地制造出能够用于监测地面扭曲、预报地震和探测火山喷发活动征兆的航天飞机专用机器人。惠特克开发
4、的全自动联合收割机器人很适合在美国一些专属农垦区的大片规划整齐的农田里收割庄稼,其中的一些高产田的产量是一般农田的十几倍大田除草机器人:德国农业专家采用计算机、全球定位系统(GPS)和灵巧的多用途拖拉机综合技术,研制出可准确施用除草剂除草的机器人。首先,由农业工人领着机器人在田间行走。在到达杂草多的地块时,它身上的GPS接收器便会显示出确定杂草位置的坐标定位图。农业工人先将这些信息当场按顺序输入便携式计算机,返回场部后再把上述信息数据资料输到拖拉机上的一台计算机里。当他们日后驾驶拖拉机进入田问耕作时,除草机器人便会严密监视行程位置。如果来到杂草区,它
5、的机载杆式喷雾器相应部分立即启动,让化学除草剂准确地喷撒到所需地点。菜田除草机器人:英国科技人员开发的菜田除草机器人所使用[3]。二、除草机器人的基本构成除草机器人硬件部分由主体、多关节机械臂、末端执行器以及起非常重要作用的摄像头等组成。软件部分主要包括导航控制和杂草检测。摄像头拍摄的图片送PC机处理,所得结果分别用于控制主体自主行走和机械臂定点除草。各种部件的联系极为重要,特别是导航摄像头的图像分析与执行端的运动学分析。三、除草机器人的关键技术及其原理在除草机器人的设计和控制中,导航摄像头的图像分析和执行器的运动学分析,参数的输入控制与PC机软件的
6、结合,还有除草方法的选择都具有极其重要的意义。1.视觉图像分析及其导航。利用机器视觉导航技术引导除草机器人沿着农作物行自动行走,行走时又利用机器视觉技术检测农作物行间杂草。除草机器人多关节机械臂运动到杂草区域,切割杂草并涂抹除草剂,执行结束后再继续行走。在整个过程中机器人的图像识别能力直接决定了机器人的成功与失败,而图像识别的配准还有分辨深度的问题一直是我们大学或者科研的难题之所在[4]。现在在这方面的研究又处于不断进步的水平,以下是国内外的一些典型的研究方法:(1)基于OCD-ICP(优化角点集提取——迭代最近点)的图像配准方法。该方法利用图形学原
7、理,对图像边缘角点候选点集提出了四个筛选规则,逐步筛选得到优化的角点集,并在此基础上利用迭代最近点的方法得到最优配准;(2)基于SIFT特征提取算法与KD树搜索匹配算法相结合的新方法。通过对候选特征点进行多次模糊处理,使其分布在高斯差分图像的灰度轮廓线边缘,利用SIFT特征提取算法找到满足极限约束的极值点;通过KD树最邻近点搜索和匹配算法使处理后的特征点与原始图像进行特征匹配,快速找出匹配正确的特征点;(3)基于HSI颜色分量的颜色特征提取方法。该方法结合HSI颜色分量反映物体本质颜色的特点和直方图多阈值分类对图像内容的自适应优点,采用直方图多阈值分
8、类方法量化各HSI颜色分量,组合量化后的颜色分量提取图像颜色特征。对该方法提取的视觉图像颜色特征进行聚类,并
此文档下载收益归作者所有