2.1.2函数-区间的概念及求定义域的方法

2.1.2函数-区间的概念及求定义域的方法

ID:12101625

大小:268.50 KB

页数:6页

时间:2018-07-15

2.1.2函数-区间的概念及求定义域的方法_第1页
2.1.2函数-区间的概念及求定义域的方法_第2页
2.1.2函数-区间的概念及求定义域的方法_第3页
2.1.2函数-区间的概念及求定义域的方法_第4页
2.1.2函数-区间的概念及求定义域的方法_第5页
资源描述:

《2.1.2函数-区间的概念及求定义域的方法》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、高中数学教案第二章函数(第2课时)课题:2.1.2函数-区间的概念及求定义域的方法教学目的:1.能够正确理解和使用“区间”、“无穷大”等记号;掌握分式函数、根式函数定义域的求法,掌握求函数解析式的思想方法;2.培养抽象概括能力和分析解决问题的能力;教学重点:“区间”、“无穷大”的概念,定义域的求法教学难点:正确求分式函数、根式函数定义域授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪教学过程:一、复习引入:函数的三要素是:定义域、值域和定义域到值域的对应法则;对应法则是函数的核心(它规定了x和y之间的某种关系),定义域是函数的重要组成部分(对应法则相同而定义域

2、不同的映射就是两个不同的函数);定义域和对应法则一经确定,值域就随之确定前面我们已经学习了函数的概念,,今天我们来学习区间的概念和记号二、讲解新课:1.区间的概念和记号在研究函数时,常常用到区间的概念,它是数学中常用的述语和符号.设a,bR,且a

3、表示,在图中,用实心点表示包括在区间内的端点,用空心点表示不包括在区间内的端点:定义名称符号数轴表示{x

4、axb}闭区间[a,b]{x

5、a

6、ax

7、aa,xb,x

8、有两个区间端点,且左端点小于右端点;③两个端点之间用“,”隔开.2.求函数定义域的基本方法我们知道,根据函数的定义,所谓“给定一个函数”,就应该指明这个函数的定义域和对应法则(此时值域也往往随着确定),不指明这两点是不能算给定了一个函数的,那么为什么又在给定函数之后来求它的定义域呢?这是由于用解析式表示函数时,我们约定:如果不单独指出函数的定义域是什么集合,那么函数的定义域就是能使这个式子有意义的所有实数x的集合.有这个约定,我们在用解析式给出函数的对应法则的同时也就给定了定义域,而求函数的定义域就是在这个意义之下写出使式子有意义的所有实数组成的集合.3.分段函数:有

9、些函数在它的定义域中,对于自变量x的不同取值范围,对应法则不同,这样的函数通常称为分段函数.分段函数是一个函数,而不是几个函数.4.复合函数:设f(x)=2x-3,g(x)=x2+2,则称f[g(x)]=2(x2+2)-3=2x2+1(或g[f(x)]=(2x-3)2+2=4x2-12x+11)为复合函数三、讲解范例:下面举例说明函数定义域的求法.例1已知例2已知f(x)=x2-1g(x)=求f[g(x)]解:f[g(x)]=()2-1=x+2例3求下列函数的定义域:①②双桥中学第6页(共6页)高中数学教案第二章函数(第2课时)③④⑤解:①要使函数有意义,必须:即:∴

10、函数的定义域为:[]②要使函数有意义,必须:∴定义域为:{x

11、}③要使函数有意义,必须:Þ∴函数的定义域为:④要使函数有意义,必须:∴定义域为:⑤要使函数有意义,必须:即x<或x>∴定义域为:例4若函数的定义域是R,求实数a的取值范围双桥中学第6页(共6页)高中数学教案第二章函数(第2课时)解:∵定义域是R,∴∴例5若函数的定义域为[-1,1],求函数的定义域解:要使函数有意义,必须:∴函数的定义域为:求用解析式y=f(x)表示的函数的定义域时,常有以下几种情况:①若f(x)是整式,则函数的定义域是实数集R;②若f(x)是分式,则函数的定义域是使分母不等于0的实数集;

12、③若f(x)是二次根式,则函数的定义域是使根号内的式子大于或等于0的实数集合;④若f(x)是由几个部分的数学式子构成的,则函数的定义域是使各部分式子都有意义的实数集合;⑤若f(x)是由实际问题抽象出来的函数,则函数的定义域应符合实际问题.例6已知f(x)满足,求;∵已知①,将①中x换成得②,①×2-②得∴.例7设二次函数满足且=0的两实根平方和为10,图象过点(0,3),求的解析式.解:设,双桥中学第6页(共6页)高中数学教案第二章函数(第2课时)∵图象过点(0,3),∴有f(0)=c=3,故c=3;又∵f(x)满足且=0的两实根平方和为10,∴得对

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。