黄金比例分割法确定对称逐次超松弛迭代法的最佳松弛因子

黄金比例分割法确定对称逐次超松弛迭代法的最佳松弛因子

ID:11536600

大小:191.00 KB

页数:43页

时间:2018-07-12

黄金比例分割法确定对称逐次超松弛迭代法的最佳松弛因子_第1页
黄金比例分割法确定对称逐次超松弛迭代法的最佳松弛因子_第2页
黄金比例分割法确定对称逐次超松弛迭代法的最佳松弛因子_第3页
黄金比例分割法确定对称逐次超松弛迭代法的最佳松弛因子_第4页
黄金比例分割法确定对称逐次超松弛迭代法的最佳松弛因子_第5页
资源描述:

《黄金比例分割法确定对称逐次超松弛迭代法的最佳松弛因子》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、黄金比例分割法确定对称逐次超松弛迭代法的最佳松弛因子//.paper.edu-1-黄金比例分割法确定对称逐次超松弛迭代法的最佳松弛因子张德宣,杜成斌,孙立国河海大学工程力学系,南京(210098)摘要:本文提出了将黄金分割法确定松弛因子与对称逐次超松弛法的改进迭代格式相结合的迭代算法。算法应用黄金比例分割法确定最佳松弛因子,成功的将其与运行速度和效率很高的对称逐次超松弛法的改进迭代格式相结合,并给出了迭代收敛性证明,编写了相应的程序,对一实际结构进行的算例计算表明,与大型商业软件的计算结果相比较,本文所提算法具有精度高,收敛快的优点。关键词:黄金分割;对称逐次超松弛法

2、;松弛因子1.引言线性代数方程组bAx=(其中A为非奇异系数矩阵,b为列向量)的迭代解法通常有Jacobi迭代法,GaussSeidel迭代法和对称逐次超松弛迭代(SSOR)法三种,此外还有USAOR[1]迭代法,USSOR[2]迭代法等。但是当结构的自由度达到较大的数目(如10000个自由度以上),Jacobi法和GaussSeidel法存在着运算速率很慢这一明显缺点,而且这些迭代方法的结果的精度不能保证。因此本文针对运算速率很高的对称逐次超松弛法的改进迭代格式提出了用黄金分割法确定松弛因子的思路,编写了黄金分割计算松弛因子与相应的迭代法相结合的程序,实际算例表明,

3、本文方法可提高求解大型线性方程组的求解效率和精度。2.SSOR-PCG法改进的迭代格式SSOR法在每步迭代中,需计算系数矩阵与方向向量的乘积,下面引用了该法的改进迭代格式,避免了该乘积的计算,比原迭代格式节省计算量8%—50%。SSOR法的改进迭代格式[3]为:置初值0,,,,,0000010000==??==??=????kzWdVyzgWyRKgTδδ,(1)R:()kkVyy,=α式中(,)为内积表示,下同。如果εα≤,则停止,否则//.paper.edu-2-??????????????????????????????+==+??==??++=+=??=+??

4、+++++??++RkkzWdzVyzVyyVyyVdzWdyydVdzdVyykTkkkkkkkkkkkkkkkkkkkkkkkkkk转到,1,,),,/(),()),((,),2,/(),(111111111ββττδδτ(2)从迭代格式可见,由于V是对角阵,计算Vy和Vd为2n次乘法运算。改进的迭代格式由于避免了计算Ad,比原迭代格式可省()nra2??次乘法运算,ar为A的各行非零元素的平均个数。因此,3=ar是改进迭代格式节省计算量约8%;62>>ar时,可节省计算量约50%,各迭代步计算量接近CG(共轭梯度)法的计算量。3.松弛因子的选取本文采

5、用上述对称逐次超松弛法的改进迭代格式求解大型线性方程组,将黄金分割法确定松弛因子与之相结合,松弛因子的取值对迭代公式的收敛速度影响很大,它的好坏直接影响到收敛的快慢。为了保证迭代过程的收敛,取21<<ω,但是在1和2之间仍然有很多的取值,究竟如何取值,目前并没有统一的规定,一般是将ω的取值区间(1,2)进行M等分,松弛因子ω分别取M/11+,M/21+,……,MM/)1(1??+,然后分别代入迭代公式求解的同时比较出最少的迭代次数,这样就得到了最佳的ω值。但是这种方法如果要得到比较精确的ω值,M的取值就要变大,如果要在程序中实现,就导致计算量增加很多,运算

6、时间就会延长许多,是很不经济的。黄金分割比例法是一种经典的算法,本文即采用此种方法来确定最佳松弛因子,其具体步骤和主要思想如下:(1)利用优选法思想,在(1,2)之间选取四个点,即:dot1=1,dot2=dot4-0.618(dot4-dot1),dot3=dot1+0.618(dot4-dot1),dot4=2。(2)分别取dot2与dot3作为松弛因子代入迭代程序,比较出最少的迭代次数,如果dot2对应的迭代次数少,则选取(dot1,dot2)作为收敛区间,如果是dot3对应的迭代次数少,则选取(dot3,dot4)作为收敛区间。(3)在所选取的收敛区间里循环进

7、行上述的两个步骤,直到选取出迭代次数最少时所对应的最佳松弛因子。通过本文中所采用的算例验证,本文方法确定松弛因子的加速效果是明显的,计算的时间相对较短。在SSOR法改进迭代格式中采用黄金比例分割的综合算法就可以根据不同的具体工程问题确定最佳松弛因子,该算法简单明了,而且效果显著,大大节省了选取最佳松弛因子的时间,提高了大型有限元方程组计算的收敛速度。4.收敛性证明定义1[4]设AnnC??∈,nλλλ,,,21L为A的特征值,我们称//.paper.edu-3-iiAλρmax)(=(3)为A的谱半径。定义2[5]由1)(0<<Bρ,且误

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。