必修一至必修五基础知识汇总

必修一至必修五基础知识汇总

ID:11219800

大小:703.50 KB

页数:6页

时间:2018-07-10

必修一至必修五基础知识汇总_第1页
必修一至必修五基础知识汇总_第2页
必修一至必修五基础知识汇总_第3页
必修一至必修五基础知识汇总_第4页
必修一至必修五基础知识汇总_第5页
资源描述:

《必修一至必修五基础知识汇总》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、必修一(一)集合1.集合的概念(1)集合是数学中的一个不加定义的原始概念,它是指某些指定对象的全体.集合中的每个对象叫做这个集合的元素,它具有三个性质,即确定性、无序性和互异性.(2)根据集合所含元素个数的多少,集合可分为有限集、无限集和空集;根据集合所含元素的性质,集合又可为点集、数集等.空集是不含任何元素的集合,用表示.(3)我们约定用表示自然数集,用表示正整数集,用表示整数集,用表示有理数集,用表示实数集.(4)集合的表示方法有列举法、描述法和图示法(venn图).2.集合间的基本关系(1)集合与元素的关系表示元素和集合之间的关

2、系,有属于“”和不属于“”两种情形.(2)集合与集合之间的关系集合与集合之间有包含、真包含、不包含、相等等几种关系.若有限集A中有n个元素,集合A的子集个数为,非空子集的个数为,真子集的个数为,非空真子集的个数为.3.集合的运算集合与集合之间有交、并、补集三种运算.4.集合运算中两组常用的结论(1)①;②.(2)①;②.(二)函数的概念(1)函数的定义设A,B是非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x在集合B中都有唯一确定的数f(x)和它对应,那么就称为从集合A到集合B的一个函数,记作.其中x叫做自变量,x

3、的取值范围A叫做函数的定义域;与x的值相对应的y的值叫做函数值,函数值的集合叫做函数的值域.值域是集合B的子集.③·映射:设A,B是两个集合,如果按照某种确定的对应关系f,使对于集合A中的任意一个元素在集合B中都有唯一确定的元素和它对应,那么这样的对应就称为从集合A到集合B的映射,记作.函数实际上是一种特殊的映射.而映射是一种特殊的对应:一对一,多对一.(2)函数的三要素:定义域、对应关系及值域称为函数的三要素.在函数的三要素中其决定性作用的是定义域及对应关系,定义域及对应关系确定了,这个函数就唯一确定了.(3)相等函数:定义域相同,

4、并且对应关系完全一致的两个函数就称为相等函数.2.函数的表示方法函数的表示方法主要有三种:解析法、图象法、列表法.分段函数:在定义域的不同部分上有不同的解析式,这样的函数称为分段函数.(三)函数单调性1.增函数、减函数设函数的定义域为I:如果对于定义域I内某个区间D上的任意两个自变量的值,当时,都有,那么就说函数在区间D上是增函数;如果对于定义域I内某个区间D上的任意两个自变量的值,当时,都有,那么就说函数在区间D上是减函数.2.单调性、单调区间如果函数在区间D上是增函数或减函数,那么就说函数在这一区间上具有(严格的)单调性,区间D叫

5、做的单调区间.3.利用定义判断(证明)函数单调性的一般步骤:①设出自变量;②作差(商);③判号;④写出结论.2.函数最值的几何意义是对应函数图像上点的纵坐标的最大值或最小值,即图像的最高点或最低点.3.函数的最值与求函数的值域从概念上看是不同的,函数值域的一些边界值不一定是函数值,函数的最值是函数值域中的一个值,函数取得最值时,一定有相应的x值.4.判断函数单调性的常见方法①定义法;②图象法;③导数法.④5.求函数最值或值域的方法①单调性法;②配方法;③换元法;④判别式法;⑤图象法;⑥不等式法等.5.一些重要函数的单调性的单调区间:增

6、区间;减区间.的单调区间:增区间;减区间(四)函数奇偶性1.奇偶性(1)奇函数、偶函数如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数.如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数.(2)奇偶性如果函数是奇函数或偶函数,那么就说函数具有奇偶性.(3)奇函数、偶函数的性质6①奇函数、偶函数的定义域皆关于原点对称(此条件是函数具有奇偶性的必要不充分条件);②奇函数的图象关于原点对称,偶函数的图象关于y轴对称;③若奇函数在x=0处有定义,那

7、么一定有.④在定义域的公共部分内,两个偶函数的和、差、积、商(分母不为零)仍是偶函数;两个奇函数的和、差仍是奇函数;奇数个奇函数的积为奇函数;偶数个奇函数的积为偶函数;一个奇函数与一个偶函数的积为奇函数;一个奇函数与一个偶函数(均不恒为零)的和与差既不是奇函数,也不是偶函数.⑤奇函数在关于原点对称的区间上具有相同的单调性,偶函数在关于原点对称的区间上具有相反的单调性.(五)基本函数:一次二次函数1.函数叫做一次函数,它的定义域和值域皆为R2.一次函数性质3.①当k>0时,为增函数,当k<0时,为减函数;②当b=0时,函数为正比例函数;

8、③直线y=kx+b与x轴的交点为与y轴的交点为.3.二次函数的解析式的三种形式:①一般式;②顶点式;③零点式;4.二次函数的图象与性质①的图象是一条抛物线,顶点坐标为,对称轴方程为,当时开口向上,当时开口向下;②时,抛物

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。