资源描述:
《必修一至必修五基础知识汇总.doc》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、必修_(%1)集合1.集合的概念⑴集合是数学中的一个不加定义的原始概念,它是指某些指定对象的全体.集合中的每个对象叫做这个集合的元素,它具有三个性质,即确定性、无序性和互异性.(2)根据集合所含元素个数的多少,集合可分为有限集、无限集和空集;根据集合所含元素的性质,集合又可为点集、数集等•空集是不含任何元素的集合,用0表示.(3)我们约定用N表示自然数集,用N•表示正整数集,用Z表示整数集,用Q表示有理数集,用空表示实数集.(4)集合的表示方法有列举法、描述法和图示法(venn图).2.集合间的基本关系(1)集合与元素的关系表示元素和集合之间的关系,有属于“w”和不属于两种情形.
2、(2)集合与集合之间的关系集合与集合之间有包含、真包含、不包含、相等等几种关系.若有限集A中有刀个元素,集合A的子集个数为非空子集的个数为2“-1,真子集的个数为2"-1,非空真子集的个数为2"-2.3.集合的运算集合与集合之间有交、并、补集三种运算.4.集合运算中两组常用的结论(1)①獰(ADB)=(M)U(/);%1釈AUB)=(M)n(/)・(2)①AgBo=(%1)函数的概念(1)函数的定义设儿B是非空数集,如果按照某种确定的对应关系f,使对于集合力中的任意一个数无在集合E中都有唯一确定的数和它对应,那么就称为从集合/到集合〃的一个函数,记作y=/(x),xgA.其中x叫
3、做自变量,/的取值范围A叫做函数的定义域;与/的值相对应的y的值叫做函数值,函数值的集合{/(x)lxeA}叫做函数的值域.值域是集合B的子集.%1•映射:设儿E是两个集合,如果按照某种确定的对应关系/;使对于集合力中的任意一个元素在集合〃中都有唯一确定的元素和它对应,那么这样的对应就称为从集合A到集合B的映射,记作:4TB.函数实际上是一种特殊的映射.而映射是一种特殊的对应:一对一,多对一.(2)函数的三要素:定义域、对应关系及值域称为函数的三要素.在函数的三要素中其决定性作用的是定义域及对应关系,定义域及对应关系确定了,这个函数就唯一确定了.(3)相等函数:定义域相同,并且对
4、应关系完全一致的两个函数就称为相等函数.2.函数的表示方法函数的表示方法主要有三种:解析法、图象法、列表法.分段函数:在定义域的不同部分上有不同的解析式,这样的函数称为分段函数.(三)函数单调性1.增函数、减函数设函数/(兀)的定义域为I:如果对于定义域/内某个区间〃上的任意两个自变量的值石,兀2,当召VX-,时都有/(Xj/(x2),那么就说函数.f(x)在区间〃上是减函数.2.单调性、单调区间如果函数),=/(兀)在区间〃上是增函数或减函
5、数,那么就说函数),=/(兀)在这一区间上具有(严格的)单调性,区间〃叫做y=f(x)的单调区间.3.利用定义判断(证明)函数单调性的一般步骤:%1设出自变量;②作差(商);③判号;④写出结论.2.函数最值的几何意义是对应函数图像上点的纵坐标的最大值或最小值,即图像的最高点或最低r函数的最值与求函数的值域从概念上看是不同的,函数值域的一些边界值不一定是函数值,函数的最值是函数值域中的一个值,函数取得最值时,一定有相应的牙值.4.判断函数单调性的常见方法—①定义法;②图象法;③导数法.④5.求函数最值或值域的方法①单调性法;②配方法;③换元法;④判别式法;⑤图象法;⑥不等式法等.1
6、.—些重要函数的单调性y=x+—的单调区间:增区间(-00,-1),(1,4-00);x减区间(―1,0),(0,1)・y=ax+-(a>^b>0)的单调区间:增区间;减区间(-J-,0),(0J-)■X.Y(IVClVdY(四)函数奇偶性1.奇偶性(1)奇函数、偶函数如果对于函数tx)的定义域内任意一个匕都有f(-力=fd),那么函数fd)就叫做偶函数.如果对于函数/、(力的定义域内任意一个X,都有f(-力=-门力,那么函数fd)就叫做奇函数.(2)奇偶性如果函数/(x)是奇函数或偶函数,那么就说函数/U)具有奇偶性.(3)奇函数、偶函数的性质%1奇函数、偶函数的定义域皆关于
7、原点对称(此条件是函数具有奇偶性的必要不充分条件);%1奇函数的图象关于原点对称,偶函数的图象关于y轴对称;%1若奇函数・f(x)在尸0处有定义,那么一定有/(0)=0.%1在定义域的公共部分内,两个偶函数的和、差、积、商(分母不为零)仍是偶函数;两个奇函数的和、差仍是奇函数;奇数个奇函数的积为奇函数;偶数个奇函数的积为偶函数;一个奇函数与一个偶函数的积为奇函数;一个奇函数与一个偶函数(均不恒为零)的和与差既不是奇函数,也不是偶函数.%1奇函数在关于原点对称的区间上具有相同的单调