2016-2017学年人教版初中七年级数学上册教案(收藏版)教材教案.doc

2016-2017学年人教版初中七年级数学上册教案(收藏版)教材教案.doc

ID:11001226

大小:548.00 KB

页数:58页

时间:2018-07-09

2016-2017学年人教版初中七年级数学上册教案(收藏版)教材教案.doc_第1页
2016-2017学年人教版初中七年级数学上册教案(收藏版)教材教案.doc_第2页
2016-2017学年人教版初中七年级数学上册教案(收藏版)教材教案.doc_第3页
2016-2017学年人教版初中七年级数学上册教案(收藏版)教材教案.doc_第4页
2016-2017学年人教版初中七年级数学上册教案(收藏版)教材教案.doc_第5页
资源描述:

《2016-2017学年人教版初中七年级数学上册教案(收藏版)教材教案.doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、1.3.1有理数的加法(1)第一课时三维目标一、知识与技能理解有理数加法的意义,掌握有理数加法法则,并能准确地进行有理数的加法运算.二、过程与方法引导学生观察符号及绝对值与两个加数的符号及其他绝对值的关系,培养学生的分类、归纳、概括能力.三、情感态度与价值观培养学生主动探索的良好学习习惯.教学重、难点与关键1.重点:掌握有理数加法法则,会进行有理数的加法运算.2.难点:异号两数相加的法则.3.关键:培养学生主动探索的良好学习习惯.四、教学过程一、复习提问,引入新课1.有理数的绝对值是怎样定义的?如何计算一个数的绝对

2、值?2.比较下列每对数的大小.(1)-3和-2;(2)│-5│和│5│;(3)-2与│-1│;(4)-(-7)和-│-7│.五、新授在小学里,我们已学习了加、减、乘、除四则运算,当时学习的运算是在正有理数和零的范围内.然而实际问题中做加法运算的数有可能超出正数范围,例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数.本章前言中,红队进4个球,失2个球;蓝队进1个球,失1个球,那么哪个队的净胜球多呢?要解决这个问题,先要分别求出它们的净胜球数.红队的净胜球数为:4+(-2);蓝队的净胜球数

3、为:1+(-1).这里用到正数与负数的加法.怎样计算4+(-2)呢?下面借助数轴来讨论有理数的加法.看下面的问题:一个物体作左右方向的运动,我们规定向左为负、向右为正.(1)如果物体先向右运动5m,再向右运动3m,那么两次运动后总的结果是什么?我们知道,求两次运动的总结果,可以用加法来解答.这里两次都是向右运动,显然两次运动后物体从起点向右运动了8m,写成算式就是:5+3=8①这一运算在数轴上可表示,其中假设原点为运动的起点.(如下图)(2)如果物体先向左运动5m,再向左运动3m,那么两次运动后总的结果是什么?显然

4、,两次运动后物体从起点向左运动了8m,写成算式就是:(-5)+(-3)=-8②这个运算在数轴上可表示为(如下图):(3)如果物体先向右运动5m,再向左运动3m,那么两次运动后物体与起点的位置关系如何?在数轴上我们可知物体两次运动后位于原点的右边,即从起点向右运动了2m.(如下图)写成算式就是:5+(-3)=2③探究:还有哪些可能情形?请同学们利用数轴,求以下情况时物体两次运动的结果:(4)先向右运动3m,再向左运动5m,物体从起点向______运动了______m.要求学生画出数轴,仿照(3)画出示意图.写出算式是

5、:3+(-5)=-2④(5)先向右运动5m,再向左运动5m,物体从起点向_____运动了_____m.先向右运动5m,再向左运动5m,物体回到原来位置,即物体从起点向左(或向右)运动了0m,因为+0=-0,所以写成算式是:5+(-5)=0⑤(6)先向左运动5m,再向左运动5m,物体从起点向________运动了_______m.同样,先向左边运动5m,再向右运动5m,可写成算式是:(-5)+5=0⑥如果物体第1秒向右(或左)运动5m,第2秒原地不动,两秒后物体从起点向右(或左)运动了多少呢?请你用算式表示它.可写成

6、算式是:5+0=5或(-5)+0=-5⑦从以上写出的①~⑦个式子中,你能总结出有理数加法的运算法则吗?引导学生观察和的符号和绝对值,思考如何确定和的符号?如何计算和的绝对值?算式是小学已学过的两个正数相加.观察算式②,两个加数的符号相同,都是“-”号,和的符号也是“-”号与加数符号相同;和的绝对值8等于两个加数绝对值的和,即│-5│+│-3│=│-8│.由①②可归结为:同号两数相加,取相同的符号,并把绝对值相加.例如(-4)+(-5)=-(4+5)=-9.观察算式③、④是两个互为相反数相加,和为0.由算式③~⑥可归

7、结为:绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数相加得0.由算式⑦知,一个数同0相加,仍得这个数.综合上述,我们发现有理数的加法法则,让学生朗读课本第18页中“有理数的加法法则”.一个有理数由符号与绝对值两部分组成,进行加法运算时,必先确定和的符号,再确定和的绝对值. 例1:计算.(1)(-3)+(-5);(2)(-4.7)+2.9;(3)+(-0.125).分析:本题是有理数加法,所以应遵循加法法则,按判断类型,确定符号、计算绝对值的步骤进行计算.(1)是同

8、号两数相加,按法则1,取原加数的符号“-”,并把绝对值相加.(2)是绝对值不相等的异号两数相加.(3)是绝对值相等的两数相加,根据法则2进行计算.解:(1)(-3)+(-5)=-(3+5)=-8;(2)(-4.7)+2.9=-(4.7-2.9)=-1.8;(3)+(-0.125)=+(-)=0.例2:足球循环赛中,红队胜黄队4:1,黄队胜蓝队1:0,蓝队胜红

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。