欢迎来到天天文库
浏览记录
ID:10119080
大小:25.50 KB
页数:4页
时间:2018-06-11
《教育论文新课标下高中数学概念课的教学》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、新课标下高中数学概念课的教学新课标下高中数学概念课的教学是小柯论文网通过网络搜集,并由本站工作人员整理后发布的,新课标下高中数学概念课的教学是篇质量较高的学术论文,供本站访问者学习和学术交流参考之用,不可用于其他商业目的,新课标下高中数学概念课的教学的论文版权归原作者所有,因网络整理,有些文章作者不详,敬请谅解,如需转摘,请注明出处小柯论文网,如果此论文无法满足您的论文要求,您可以申请本站帮您代写论文,以下是正文。 [摘要]数学概念课的教学在数学教学中占有重要的地位。如何搞好新课标下数学概念课的教学呢?本文从以下四个方面进行了探讨:一是在体验数学概念产生
2、的过程中认识概念;二是在挖掘新概念的内涵与外延的基础上理解概念;三是在寻找新旧概念之间的联系的基础上掌握概念;四是在应用数学概念解决问题的过程中巩固概念。 [关键词]新课标高中数学教学数学概念认识理解 长期以来,由于受应试教育的影响,不少教师在教学中重解题、轻概念,造成数学概念与解题脱节的现象。有些教师仅仅把数学概念看作一个名词而已,认为概念教学就是对概念作解释,要求学生记忆。而没有看到像函数、向量这样的概念,本质是一种数学观念,是一种处理问题的数学方法。一节“概念课”教完了,也就完成了它的历史使命,剩下的是赶紧解题,造成学生对概念含糊不清,一知半
3、解,不能很好地理解和运用概念,严重影响了学生的解题质量。另一方面,新教材有的地方对概念教学的要求是知道就行,需要某个概念时,就在旁边用小字给出,这样过高的估计了学生的理解能力,也是造成学生不会解题的一个原因。如何搞好新课标下数学概念课的教学呢? 一、在体验数学概念产生的过程中认识概念 数学概念的引入,应从实际出发,创设情境,提出问题。通过与概念有明显联系、直观性的例子,使学生在对具体问题的体验中感知概念,形成感性认识,通过对一定数量感性材料的观察、分析,提炼出感性材料的本质属性。如在“异面直线”概念的教学中,教师应先展示概念产生的背景,如长方体
4、模型和图形,当学生找出两条既不平行又不相交的直线时,教师告诉学生像这样的两条直线就叫做异面直线,接着提出“什么是异面直线”问题,让学生相互讨论,尝试叙述,经过反复修改补充后,简明、准确、严谨的定义:“我们把不同在任何一个平面上的两条直线叫做异面直线,在此基础上,再让学生找出教室或长方体中的异面直线,最后以平面作衬托画出异面直线的图形。学生经过以上过程对异面直线的概念有了明确的认识,同时也经历了概念发生发展过程的体验。 二、在挖掘新概念的内涵与外延的基础上理解概念 新概念的引入,是对已有概念的继承、发展和完善。有些概念由于其内涵丰富、外延广泛等原
5、因,很难一步到位,需要分成苦干个层次,逐步加深提高。如三角函数的定义,经历了以下三个循序渐进、不断深化的过程:(1)用直角三角形边长的比刻画的锐角三角函数的定义。(2)用点的坐标表示的锐角三角函数的定义。(3)任意角的三角函数的定义。由此概念衍生出:①三角函数的值在各个象限的符号。②三角函数线。③同角三角函数的基本关系式。④三角函数的图像与性质。⑤三解函数的诱导公式等。可见,三角函数的定义在三角函数教学中可谓重中之重,是整个三角部分的基石,它贯穿于与三角有关的各部分内容并起着关键作用。“磨刀不误砍柴工”,重视概念教学,挖掘概念的内涵与外延,有利于学生对概念
6、的理解。 三、在寻找新旧概念之间联系的基础上掌握概念 数学中有许多概念都有着密切的联系,如平行线段与平行向量、平面角与空间角、方程与不等式、映射与函数、对立事件与互斥事件等等,在教学中应善于寻找、分析其联系与区别,有利于学生掌握概念的本质。再如,函数概念有两种定义,一种是初中给出的定义,是从运动变化的观点出发,其中的对应关系是将自变量的每一个取值,与唯一确定的函数值对应起来:另一种是高中给出的定义,是从集合、对应的观点出发,其中的对应关系是将原象集合中的每一个元素与象集合中唯一确定的元素对应起来。从历史上看,初中给出的定义来源于物理公式,而函数
7、是描述变量之间的依赖关系的重要数学模型,函数可用图像、表格、公式等表示,所以高中用集合与对应的语言来刻画函数,抓住了函数的本质属性,更具有一般性。认真分析两种函数定义,其定义域与值域的含义完全相同,对应关系本质也一样,只不过叙述的出发点不同,所以两种函数的定义,本质是一致的。当然,对于函数概念真正的认识和理解是不容易的,要经历一个多次接触的较长的过程。 四、在运用数学概念解决问题的过程中巩固概念 数学概念形成之后,通过具体例子,说明概念的内涵,认识概念的“原型”,引导学生利用概念解决数学问题和发现概念在解决问题中的作用,是数学概念教学的一个重要
8、环节,此环节操作的成功与否,将直接影响学生对数学概念的巩固,以及解
此文档下载收益归作者所有