Bottom-Up Approach Derived Iron and Nitrogen Cofunctionalized Carbon as E ffi cient Renewable Catalyst for Selective Reduction of Nitroa

Bottom-Up Approach Derived Iron and Nitrogen Cofunctionalized Carbon as E ffi cient Renewable Catalyst for Selective Reduction of Nitroa

ID:81816516

大小:3.22 MB

页数:9页

时间:2023-07-20

上传者:U-14522
Bottom-Up Approach Derived Iron and Nitrogen Cofunctionalized Carbon as E ffi cient Renewable Catalyst for Selective Reduction of Nitroa_第1页
Bottom-Up Approach Derived Iron and Nitrogen Cofunctionalized Carbon as E ffi cient Renewable Catalyst for Selective Reduction of Nitroa_第2页
Bottom-Up Approach Derived Iron and Nitrogen Cofunctionalized Carbon as E ffi cient Renewable Catalyst for Selective Reduction of Nitroa_第3页
Bottom-Up Approach Derived Iron and Nitrogen Cofunctionalized Carbon as E ffi cient Renewable Catalyst for Selective Reduction of Nitroa_第4页
Bottom-Up Approach Derived Iron and Nitrogen Cofunctionalized Carbon as E ffi cient Renewable Catalyst for Selective Reduction of Nitroa_第5页
Bottom-Up Approach Derived Iron and Nitrogen Cofunctionalized Carbon as E ffi cient Renewable Catalyst for Selective Reduction of Nitroa_第6页
Bottom-Up Approach Derived Iron and Nitrogen Cofunctionalized Carbon as E ffi cient Renewable Catalyst for Selective Reduction of Nitroa_第7页
Bottom-Up Approach Derived Iron and Nitrogen Cofunctionalized Carbon as E ffi cient Renewable Catalyst for Selective Reduction of Nitroa_第8页
Bottom-Up Approach Derived Iron and Nitrogen Cofunctionalized Carbon as E ffi cient Renewable Catalyst for Selective Reduction of Nitroa_第9页
资源描述:

《Bottom-Up Approach Derived Iron and Nitrogen Cofunctionalized Carbon as E ffi cient Renewable Catalyst for Selective Reduction of Nitroa》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

pubs.acs.org/JPCCArticleBottom-UpApproachDerivedIronandNitrogenCofunctionalizedCarbonasEfficientRenewableCatalystforSelectiveReductionofNitroarenesShuchangWu,*GuodongWen,YangSu,XiaoliPan,HuaYan,JiangyongDiao,*andHongyangLiu*CiteThis:J.Phys.Chem.C2021,125,5127−5135ReadOnlineACCESSMetrics&MoreArticleRecommendations*sıSupportingInformationABSTRACT:Thenon-noblemetalandnitrogencofunctionalizedcarbon(M−N−C)attractenormousattentionsinheterogeneouscatalysis.However,thefabricationoftheM−N−Csystemscommonlyrelyonfossilresourcebasedcarbon,whiletheexploitationofbiomassderivedmaterialsoftensufferfromissuessuchastediousprocedures,complexcompositionofthebiomassandexcessivedosageofthedopantprecursor.Inthisstudy,adirectandlarge-scale,bottom-upmethodwasdevelopedforthefabricationofthesustainableironandnitrogencofunctionalizedcarbon(FeNC)inagreenandsustainableway.TheobtainedFeNCpossessedwell-definedstructureaswellasuniformlydistributedironspecies.ThecatalyticresultssuggestedthatFeNCcouldserveasefficientcatalystfortheselectivereductionofnitroarenes.TheFeNxspeciesplayedanimportantrole,whiletheN-dopedcarbonmatrixmayalsoinvolveinthereaction.1.INTRODUCTIONhighlysoughtafter.Inthisregard,thebiomass-derivedcarbonmodifiedwithanon-noblemetalaswellasNdopantsareItmakesgreatsensetodevelopefficientandsustainableattractive.Althoughpromising,theexploitationoftenconfrontheterogeneouscatalystforthereductionofnitroarenesduetowithtediousprocedures,complexcompositionofthebiomass,theimportantapplicationsofthecorrespondinganilinesintheexcessivedosageofthedopantprecursor,oremploymentofproductionofagrochemicals,pharmaceuticals,dyes,polymers,24−271,2ediblebiomassmaterials.Thus,thedirectpreparationofandsoon.RestrainedbythehighpriceandlimitedtheM−N−Cmaterialsbasedontheearthabundantinedibleresourcesofnoblemetals,thetransitionmetalbasedcatalysts3−7biomasswithrelativelysimpleelementarysubstanceisfavored.orevenmetal-freematerialsaremoreappealing.OwingtoHerein,wereportafacilebottom-upmethodforthetheirinherentadvantagessuchaseasyavailability,highthermalfabricationofthesustainableFeandNcofunctionalizedstability,nontoxicity,andcorrosionresistancetowardacidandcarbon,duringwhichthefilterpaperservesasthecarbonbase,carbonmaterialshavestimulatedenormousattentionsincatalysiseitherassupportorcatalyst.8−10Moreover,thesource,whileironchloride(FeCl3)andmoderateamountofDownloadedviaUNIVOFCALIFORNIASANTABARBARAonMay16,2021at06:42:27(UTC).Seehttps://pubs.acs.org/sharingguidelinesforoptionsonhowtolegitimatelysharepublishedarticles.surfacephysicochemicalpropertiescanbetailoredvia1,10-phenanthroline(Phen)asFeandNprecursor,heteroatomsdoing,amongwhichnitrogen(N)isthemostrespectively.TheobtainedFeNCexhibitedhighcatalyticapplieddopants.TheunequalelectronegativitybetweenCandperformanceintheselectivereductionofnitroarenesandtheNatomscauseschargedelocalizationanddistortionoftheactivesiteswerealsoinvestigated.crystallatticewhentheNatomsdopedintothecarbonskeleton.Asaresult,theNatomswilleffectivelyenrich2.EXPERIMENTALSECTIONprotonsonthesurfaceofthemodifiedcarbonmaterialsand11,122.1.Materials.Nitrobenzene(99%)wassuppliedbycreatedmorestructuraldefects.ShanghaiMacklinBiochemicalCo.,Ltd.Nitrotoluene(99%),Whenthetransitionmetals(M)areincorporatedintothe4-nitroanisole(98%),4-nitrobenzenamine(99%),4-nitro-N-dopedcarbonmatrix,M−N−Csystemscanbefabricated.Beller’sgroupfoundtheM−N−Cmaterials(MwasmainlyFeorCo)exhibitedexcellentperformancefordifferentliquid-Received:January23,2021phasereactions,13−16andtodate,variousmethodswereRevised:February15,2021establishedtofabricatethiskindofcatalyst.17−23Atpresent,Published:March2,2021mostofthereportedM−N−Cmaterialsrelyonthefossilresourcebasedcarbon.Therefore,thedirectsynthesisoftherenewableandefficientcatalystsasanalternativerouteare©2021AmericanChemicalSocietyhttps://dx.doi.org/10.1021/acs.jpcc.1c006205127J.Phys.Chem.C2021,125,5127−5135

1TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticleFigure1.TEMimagesofFeNC(a−d),FeC(e−g),andFeNC-w(h,i).EDSelementalmapsofFeNC-w(j−m).FeNC-wwasobtainedafterFeNCwastreatedwithconcentratedHCl.Figure2.XRDpatterns(a),N2adsorption−desorptionisotherms(b),Ramanspectra(c)ofthematerials,andtheN1sXPSspectrumofFeNC(d).phenol(99%),2-nitrophenol(99%),2-nitrobenzylalcoholHangzhouSpecialPaperIndustryCo.,Ltd.Allthechemicals(98%),4-nitrochlorobenzene(99.5%),4-nitroiodobenzenewereusedwithoutfurtherpurification.(98%),4-nitroacetophenone(97%),2-nitrofluorene(98%),2.2.PreparationofCatalysts.TheFeandNcomodified8-nitroquinoline(98%),5-nitroindole(98%),and1,10-carbonwassynthesizedbyanimpregnationmethod,followedphenanthrolinemonohydrate(99%)werepurchasedfrombycarbonization.Specifically,0.33gofFeCl3anhydrouswasAladdinReagentCo.Ltd.,Shanghai,China.Irontrichloridedissolvedinthemixtureofethanolandwater,followedbytheanhydrous(CP),hydrazinehydrate(85%),ethanol,andotheradditionof0.82gofPhenundercontinuousstirring.ThenthesolventswereboughtfromChinaMedicineGroupShanghaiobtainedsolutionwasaddeddropwiseto5.0goffilterpaperChemicalReagentCompany.Filterpaperwasobtainedfromusingapipet.TheFeandNprecursorswereimpregnatedat5128https://dx.doi.org/10.1021/acs.jpcc.1c00620J.Phys.Chem.C2021,125,5127−5135

2TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticleroomtemperaturetoremovethesolvent,andthemodifiedfromtheSEMimages,theTEMimagesofthetwosamplesfilterpaperwasfurtherdriedinanovenat70°C.Next,theshoweddistinctinformation.MostofthenanoparticleswelldriedfilterpaperwastransferredtoaceramiccruciblewithadispersedonthesurfaceofFeNCandthecarbonsupportcoverandplacedinaquartztube.Subsequently,thefilterlookedtransparent,indicatingthatitwasrelativelythin(FigurepaperthatcontainsFeandNprecursorswasheatedina1a−c).ThehighresolutionTEMimagesuggestedthatthetubularfurnaceunderaN2atmosphereto800°Cwithananoparticleshadasizeofaround20nmandweresurroundedheatingrateof5°C/minandkeptfor2h.Theobtainedblackbythecarbonmatrix(Figure1d).Incontrast,aseriousproductwasgroundtoapowderandlabeledasFeNC.Asaaggregationofthenanoparticlescouldbeobservedonthecomparison,theFeCandNCwerefabricatedunderthesamesurfaceofFeCandmostofthenanoparticleswerelargerthanconditionsasthatforFeNCbutwithouttheadditionofPhen50nm(Figure1e,f).ThehighresolutionTEMimageshowedandtheFeCl3,respectively.thatthenanoparticlesinFeCwerealsocoveredwithgraphitic2.3.Characterization.TheX-raydiffraction(XRD)carbonlayers(Figure1g),whichwassimilartothatinFeNC.measurementswererecordedonaRigakuD/Max-2500PCInaddition,thecarbonsupportinFeClookedmuchthickerdiffractometerwithaCuKαradiationsourceoperatingat50thanthatinFeNC.Thus,theadditionoftheNprecursorkV,300mA.Thescanningelectronmicroscopy(SEM)imagesduringthematerialsynthesisnotonlyfavorabletofabricateweretakenusinganFEINano450scanningelectronsmallanduniformnanoparticles,butalsobeneficialforthemicroscopeoperatedat10−15kV.Thetransmissionelectronformationofthinnerlayeredcarbonsupport.microscopy(TEM)wascarriedoutonaJEOLJEM-2100FTheXRDpatternsshowedasharppeaklocatedat2θanglewithanacceleratingvoltageof200kVcombinedwithanround26°forbothFeNCandFeC,whichcouldbeassignedtoenergy-dispersivespectroscopy(EDS)spectrometer.Thethe(002)planeofgraphiticcarbon(Figure2a).Thenarrownitrogenadsorption−desorptionisothermswereacquiredinsteadofabroadpeakindicatingtheformedcarbonhadafromMicromeriticsASAP2020plus/2060at77K.Therelativelyhighcrystallinity.Incomparison,thebroadandweakspecificsurfaceareawascalculatedbyBrunauer−Emmett−diffractionpeakbetween20°and30°forNCindicatedthatitTeller(BET)method.Theporesizedistributionswerewasamorphous.ThissuggestedthattheFe-basedspeciesevaluatedfromthedesorptionbranchesoftheisothermscouldpromotethegraphitizationofthecarbonduringtheusingtheBarrett−Joyner−Halenda(BJH)method.Ramanmaterialsynthesis.Thediffractionpeaksatabout30.1°,35.4°,spectroscopywasrecordedbyaLabRamHR800using53243.0°,53.4°,56.9°,and62.6°correspondedtothe(220),nmlaser.TheX-rayphotoelectronspectroscopy(XPS)spectra(311),(400),(422),(511),and(440)planeofmagnetite28wereperformedonanESCALAB250XPSsystemwithaFe3O4,respectively(JCPDScardNo.72−2303),whilethemonochromatizedAlKαX-raysource(1486.6eV)withpeakscenteredatabout44.6°and65.0°,indicatingthe29correctionforcrosssectionsandescapedepths.presenceofmetallicFeinthecomposites.Therefore,the2.4.CatalyticReactions.TheselectivereductionofXRDanalysissuggestedthepresenceofbothFe3O4andFenitroareneswascarriedoutina15mLglassreactorthatwas(abbreviateasFeOx).ItwasnecessarytonotethatthepeaksealedwithaTeflonlid(BeijingSynthwareGlass,Inc.Pressurethatoriginatedfromthe(100)paneofcarbonmayoverlapVessel,HeavyWall).Typically,10mgoftheFeNCcatalyst,5withthatderivedfromthe(400)planeofFe3O4andthe(110)mmolofnitrobenzene,5equivofhydrazinehydrate,and1mLpaneofFeduetothecloselocationofthesediffractionpeaks.ofethanolwerechargedintotheglassreactor.AfterbeingSimilarly,the(422)planeoftheFe3O4mayalsooverlapwithsealedwithaTeflonlid,theglassreactorwasimmersedinathediffractionpeakthatoriginatedfromcarbon.Comparedto100°Coilbathforacertainperiodoftime.Afterthereaction,FeNC,theFeCexhibitedmoreintensifieddiffractionpeaksforthemixturewasdilutedwithethanolandanalyzedbyGCFeOx.ThissuggestedthattheFeOxnanoparticleswerelargerusinganisoleasinternalstandard.ForthereductionofinFeC,whichisingoodagreementwiththeTEMresults.functionalizednitroarenes,1mmolofthesubstratewasusedTheporetexturalcharacteristicsaswellasthespecificformostofthecases.surfaceareaandporevolumeoftheobtainedmaterialswerestudiedbyN2adsorption−desorptionmeasurements.Ascan3.RESULTSANDDISCUSSIONbeseenfromFigure2b,atypeIVadsorption−desorption30isothermcurvewasobservedfortheas-synthesizedFeNC.3.1.CharacterizationofSamples.ThemorphologyofTheweakN2uptakeatlowrelativepressure(p/p0<0.1)andaeachmaterialwasstudiedbySEMandTEM.TheSEMimagessignificanthysteresisloopathighrelativepressures(0.4

3TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticleFigure3.CatalyticperformanceofFeNCfortheselectivereductionofnitrobenzene(a),activitycomparisonofeachmaterial(b),correspondingfittingofthereactionparametersaccordingtofirst-(c),zero-(d),andsecond-order(e)reactionkineticswhenFeNCwasthecatalystandfirstreactionfittingfortheFeC-catalyzedreaction(f).Figure4.IRRcomparisonofdifferentmaterials.Figure6.DecompositionofhydrazinecatalyzedbyFeNC.Conditionsareasfollows:20mgofFeNC,3.4gofhydrazinehydrate,2mLofethanol,and1.2gofnitrobenzene.whichaccountedforabout83%ofthetotalporevolume.Incomparison,themicroporevolumeaccountedforabout15%Figure5.CatalyticperformanceoftheFeNCandtheHCl-treatedsamples(a)andtheeffectsofspecialreagentsonthereaction(b).KSCN-1representsthemassratioofKSCNtoFeNC,whichwas1,anditwasalsothecaseforBA-1,BA-2,andBA-3.5130https://dx.doi.org/10.1021/acs.jpcc.1c00620J.Phys.Chem.C2021,125,5127−5135

4TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticleaTable2.ReductionofSubstitutedNitroarenesCatalyzedbyFeNCabcCondition:10mgofFeNC,1mmolofthesubstrate,5equivofhydrazinehydrate,1mLofethanol,100°C,5h.10h.15mgofFeNC,65°C.d0.5mmolofsubstrate.5131https://dx.doi.org/10.1021/acs.jpcc.1c00620J.Phys.Chem.C2021,125,5127−5135

5TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticleapproach.TheNmodificationnotonlysignificantlyimprovedthedistributionoftheFe-relatedcomponents,butalsofacilitatedtheformationofthincarbonsupport.Asaresult,thepromotedperformancemayberealizedwhenworkingasacatalyst.Wethenstudiedthecatalyticperformanceoftheobtainedmaterialsintheselectivereductionofnitroarenes.First,thereductionofnitrobenzenewasinvestigatedinthepresenceofFeNC.CatalyticresultsshowedthatFeNCwashighlyactiveandselectivefortheconversionofnitrobenzenetoaniline(Figure3a).Abouthalfofthesubstratewasconvertedwithin0.5h,andmorethan70%ofthenitrobenzeneconversioncouldbeaccomplishedwithin1h.Nearlyallofthenitrobenzenewasconsumedwhenthereactiontimereached3h.Inaddition,theanilinewastheFigure7.StabilityoftheFeNC.Conditionsareasfollows:10mgofdominantproductwithaselectivityofover90%duringtheFeNC,5mmolofnitrobenzene,5equivofhydrazinehydrate,1mLofwholeprocess.Asacomparison,FeCaswellasNCofferedethanol,100°C,3h.Fortheseventhrun,thereactiontimewas4h.manyinferioractivities(Figure3b).Theconversionwasonlyabout55%and30%within5hforFeCandNC,respectively.and22%forFeNCandFeC,respectively,indicatingthetwoWhennocatalystwasused,theautoreductionprocessmaterialscontainedabundantmesopores.outputted15.3%ofnitrobenzeneconversion.TheseresultsTheRamanspectrumofeachmaterialillustratedinFiguredemonstratedthatNCasametal-freecatalystcouldoffer2cwasfittedusingfourLorentzianpeakslocatedatroundlimitedactivity.FeCwithFeOxnanoparticlesbutwithoutN1175cm−1(D4),1340cm−1(D1),1580cm−1(G),and1620modificationperformedbetterthanNC.Incomparison,FeNCcm−1(D2),respectively,andoneGaussianpeakcenteredatwithsmallerFe-containingspeciesaswellasNincorporationaround1510cm−1(D3).31TheD1bandwasrelatedtotheexhibitedthebestperformance.Recently,manykindsofN-defectsaswellasamorphouscarboninthecarbonsupport,dopedcarbonwerereportedtobehighlyactiveforvarious9,33whiletheGbandwasattributedtothegraphiticstructureofreactions.However,heretheactivityofNCwasfarfromthecarbon.Generally,theintensity(area)ratiobetweenthesatisfactory.OnepossiblereasonmayberelatedtoitslowD1andGbandswasusedtoevaluatethegraphitizationdegreegraphitization.Thelowgraphitization,whichwasconfirmedbyofthecarbonmaterials.ThelowerID1/IGvalueindicatedthetheXRDanalysis,wasnotbeneficialfortheadsorptionofthecorrespondinghighergraphitizationdegree.ThecalculatedreactantaswellastheelectrontransferduringthecatalyticID1/IGvaluewas1.4,2.3,and3.3forFeNC,FeC,andNC,reaction.TherelativelyorderedFeCoutperformedtherespectively.TheNChadthehighestID1/IGvalue,andamorphousNC,suggestingtheFeOxandtherelativebettertherefore,ithadmoreamorphouscarbonandstructuralgraphitizationstructureweremoreefficientthanthebareNCdefects.TheFeCexhibitedlowerID1/IGvalue,whichsuggestedinthisstudy.However,ascouldbeseenfromTEMimages,thattheFe-containingspeciescouldpromotethegraphitiza-severeaggregationoftheseparticlesoccurred.ThesinteringoftionprocessviatherearrangementsofthecarbonatomstotheFeOxhamperedthecatalysttoexposemoreactivesites;asreducestructuraldefects.FeNCprovidedthebestgraphitiza-aresult,theactivitywasstilllow.Thequitesmallandwelltionofthecarbonsupport,indicatingthattheintroductionofdispersednanoparticleshadapositiveeffecttoexposemoretheNfavoredthefurtherrearrangementofthecarbonatoms.activesites,therefore,thereactionwassignificantlyacceleratedOntheonehand,thepresenceofNcouldleadtotheinthepresenceofFeNC.Furthermore,theefficientconversionformationofthesmallerFe-containingcomponents;therefore,couldbeachievedindifferentsolventsinthepresenceofmoreactivesiteswouldbeexposedtopromotetheformationFeNC(TableS2).ofwell-definedcarbon.Ontheotherhand,theNthat3.3.ReactionKinetics.WetheninvestigatedthereactionincorporatedinthecarbonlatticemayboosttheactivityofkineticsoftheFeNC-catalyzedreductionprocess.AsfarasthetheseFe-relatedspecies.Bothfactorsthegraphitizationofthefirst-orderreactionisconcerned,thereisalinearrelationshipcarbonsupport.betweenln(c0/c)andT(c0istheinitialconcentrationoftheThesurfacecontentofeachelementanalyzedbyXPStargetsubstrate,whilecistheconcentrationofthetargetshowedtheexistenceofNinFeNC(TableS1).ThehighsubstratewhenthereactiontimeisT).AgoodcorrelationresolutionN1sXPSspectrumofFeNCcouldbedeconvolutedbetweenln(c0/c)andreactiontimewasobserved(Figure3c),intofourpeaks,correspondingtofourkindsofNspeciesindicatingthereactionfollowedafirst-orderkineticsinthis(Figure2d).Thepeakslocatedatthebindingenergiesaroundstudy.Asacomparison,thereactionparameterswasalsofitted399.9,401.4,and403.8eVwereassignedtopyrrolicN,accordingtothezero-aswellassecond-orderreactionkinetics.graphiticN,andoxidizedN,respectively.ThepeakataboutInprinciple,thereisalinearcorrelationbetween(c0−c)and398.7eVwasattributedtoeitherpyridinicNorFeNxspeciesthereactiontimeTforthezero-orderreaction.Sincetheduetothefactthattherewasanegligibledifferenceinbindingvolumeofthereactionmixturealmostremainedduringthe32energybetweenpyridinicNandFeNx.Incomparison,thesewholereactionprocess,weemployedthechangeoftheNspeciesexpectoxidizedNcouldbeignoredinFeC(Figureamountofnitrobenzene(n0-n)insteadof(c0-c)tocorrelateS3).withreactiontime.However,arelativelyweakcorrelationwas3.2.CatalyticPerformanceoftheAs-Synthesizedobserved(Figure3d).Inthesameway,whenthereactionwasSamples.Theabovecharacterizationinformationsuggestedfittedaccordingtothesecondreactionequation,apoorthatFeNCwithwelldispersedFe-containingspeciesinlayeredcorrelationwasalsodisplayed(Figure3e).Consequently,itcarbonwassuccessfullyfabricatedthroughafacilebottom-upwasafirst-orderreactionwhenFeNCworkedascatalyst.5132https://dx.doi.org/10.1021/acs.jpcc.1c00620J.Phys.Chem.C2021,125,5127−5135

6TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticleAlthoughFeCexhibitedinferiorperformancecomparetothatboostedactivityachievedfortheN-dopedcarboninFeNC33,40,41forFeNC,afirst-orderreactionkineticscouldbedemonstratedthanthepureNC.aswell(Figure3f).Basedontheacidtreatmentofthecatalystandselective3.4.ComparisonoftheAs-SynthesizedCatalystswithmaskingoftheactivesites,itcouldbeconcludedthattheFeNxCommercialMaterials.Thecatalyticactivitywasfurtherwasoneimportantkindofactivesite,whiletheeffectoftheN-assessedbyinitialreactionrate(IRR),whichisdefinedhereasdopedcarbonsupportinFeNCshouldalsobetakenintothemolesofnitrobenzeneconsumed(atlowconversion)perconsideration.Incomparison,theFeOxplayedaninsignificantmoleofFepersecond.ItshowedthatFeNCofferedtherole.highestIRRamongallthecatalysts,withthevalueofaboutThehydrazinehydratewasemployedasthereducingagent0.71/s(Figure4).Asacomparison,theIRRfortheFeC-inthisstudy.Fortheefficientreductionofnitrobenzene,thecatalyzedreactionwasonly0.075/s,whichwasmuchlowerdecompositionofhydrazineisrequired.Therefore,itsthanthatfortheFeNC-mediatedreaction.Inaddition,thedecompositionwasevaluated,duringwhichthevolumeofcommercialFe3O4(20nm),α-Fe2O3(30nm),andFepowdergaseousproductswasmeasuredbywaterdisplacementoutputtheIRRof0.053,0.015,and0.0053/s,respectively.Themethod.ItshowedthatthedecompositionofhydrazinehighspecificsurfaceareaandthequitelowFecontentmadecouldoccurinthepresenceofFeNCwithouttheinvolvementtheFe-relatedcomponentsdispersedinthecarbonmatrix.Asaofnitrobenzene(Figure6),indicatingtheFeNCitselfwasableresult,theactivesitesforFeNCandFeC,especiallytheformertoactivateanddecomposehydrazine.Whenthenitrobenzenewashighlyexposed,whichsignificantacceleratedthereaction.wasaddedtothereactionmixture,thedecompositionof3.5.ActiveSitesandtheActivationofHydrazine.Tohydrazinewasaccelerated.Theactivehydrogenthatwasdeterminetheactivesites,wewashedtheFeNCsamplewithproducedthroughthedecompositionofhydrazinecouldconcentratedHCl,andthetreatedmaterialwaslabeledastransfertonitrobenzeneandreducethenitrogrouptoanFeNC-w.Inaddition,FeNCwasalsotreatedwith2and4aminogroup.Theconsumptionoftheformedhydrogenmaymol/LHClandtheobtainedmaterialsweredenotedasFeNC-bebeneficialforthefurtherdecompositionofhydrazine;asaw(2)andFeNC-w(4).TheXRDpatternsshowedthattheresult,thehydrazinedecomposedfasterwhenFeNCanddiffractionpeaksattributedtoFeOxdisappeared(FigureS4),nitrobenzenecoexistinthereactionsystem.indicatingthattheFeOxnanoparticleswereremoved.The3.6.ReductionofSubstitutedNitroarenes.AseriesofTEMimagesfurtherconfirmedtheabsenceofobservableFeOxfunctionalizednitroareneswerefurtherexaminedtoinvestigatenanoparticles(Figure1h,i).However,theEDSelementalmapstheeffectofvarioussubstituentsonthecatalyticperformancedemonstratedthepresenceofbothFeandN(Figure1j−m).ofFeNC.ItshowedinTable2thatmostofthefunctionalizedSinceHClcouldremovetheironoxideaswellasthemetallicnitroarenescouldconverttothecorrespondinganilines.Foriron,whileitwasinefficienttogetridofFeNxspecies,theexample,thesubstitutedreactantsthatwithanelectron-presenceofbothFeandNafterHCltreatmentstronglydonatinggroup,suchasnitrotoluene,4-nitroanisole,4-indicatedtheexistenceofFeNx.Infact,manyrecentlyreportednitrobenzenamine,andnitrophenol,transformedtoanilinesM−N−Csystemsweretreatedwithacidtoremovethewithveryhighselectivity(Table2,entries1−8).AsaunstablespeciesandthecorrespondingstableMNcomparison,thesubstratewithelectron-withdrawinggroupsxremained.34−36ThecatalyticresultsshowedthatafterHClsuchas4-nitrochlorobenzeneand4-nitroiodobenzeneseemedtreatment,about10%discountoftheactivitywasobservedfortobemoreeasilyconsumed,andtheselectivitywasalsoquiteFeNC-w,FeNC-w(2),andFeNC-w(4)(Figure5a).Thishigh(Table2,entries9−10).Inaddition,theselectivesuggestedthattheFeOxnanoparticlesonlymadeasmallreductionofothersubstrates,suchas2-nitrofluorene,8-contributiontotheselectivereductionofnitrobenzene.Togetnitroquinoline,and5-nitroindole,wasefficientaswell(Tablein-depthinformationoftheactivesites,wetriedtopoisonthe2,entries11−13).However,thesubstitutedreactantwithpotentialactivecenters.Thepotassiumthiocyanate(KSCN)isketonegroupsfailedtoformthecorrespondinganiline(Tablegenerallyemployedasthetitrationreagenttopoisonthemetal2,entry14).Thiswasbecausethecarbonylgroupcouldeasilycentersinviewthatthiocyanateanionsandmetalcationscanreactwithhydrazinetogeneratehydrazone;thus,theformstablechelatecomplex.4,37,38However,therewashardlyformationofanilinewasrestrained.anydifferencewhenKSCNwaschargedtothereactionsystem3.7.StabilityoftheCatalyst.Finally,thestabilityoftheinourcase(Figure5b).Wethenusedbenzoicacid(BA)toFeNCwasevaluated(Figure7).ItshowedthattheconversionpoisontheactivesitesbasedonthediscoverybyXieandco-graduallydecreasedduringtherecyclingtest,butabout86%ofworkers.39ItshowedthatthereactionrateobviouslydecreasedthenitrobenzeneconversioncouldstillbeachievedaftersixwhenBAwasinvolvedinthereaction.Butmorethan60runs.Inaddition,about97%ofconversionwouldberealizedifpercentoftheactivitystillremained.Thisphenomenoncouldthereactiontimeextendedto4h(theseventhrun).Thisbeexplainedbasedontwopossibilities.OneliesinthattheBAsuggestedthatthecatalystwasrelativelystablefortheselectiveisnotasatisfactoryshieldingchemicalforFeNxspecies.Asareductionofnitroarenes.matteroffact,theconvincinganduniversalpoisoningmethodisstilllimitedinthistopicatpresent.Theotheronewasthat4.CONCLUSIONStheFeNxspecieswaseffectivelymaskedbyBA,andtheInsummary,abottom-upanddirectprocedurewasdevelopedobservedactivitymainlyderivedfromtheN-dopedcarbonforthesynthesisofFeandNcofunctionalizedcarbon.ThesupportinFeNC.TheXRD,TEM,andRamananalysisobtainedFeNCpossessedahighspecificsurfacearea,highshowedthatthecarbonmatrixinFeNChadrelativelygoodcontentofmesopores,relativelythincarbonmatrix,andgraphiticstructure.ThehighgraphitizationdegreewasuniformFe-containingcomponents.TheFeNCexhibitedhighbeneficialfortheadsorption,activationandelectrontransfercatalyticperformanceintheselectivereductionofnitroarenesduringthecatalyticreaction,whiletheNdopantfurtherandafirst-orderreactionkineticswasobserved.FeNCitselfmodifiedtheelectronicstructureandsurfaceproperty,thus,coulddecomposehydrazine,buttheprocesswouldbe5133https://dx.doi.org/10.1021/acs.jpcc.1c00620J.Phys.Chem.C2021,125,5127−5135

7TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticleacceleratedinthepresenceofnitrobenzene.Theobservable■REFERENCESFeOxnanoparticlesplayedaninsignificantroleinthereaction.(1)Tafesh,A.M.;Weiguny,J.AreviewoftheselectivecatalyticIncomparison,theFeNxmadeagreatcontribution,whilethereductionofaromaticnitrocompoundsintoaromaticamines,N-dopedcarbonsupportinFeNCmayalsoinvolveintheisocyanates,carbamates,andureasusingCO.Chem.Rev.1996,96,reaction.Thesefindingsprovideafacilestrategyforthedesign2035−2052.ofefficientnon-noblemetalcatalystsforgreenandsustainable(2)Downing,R.S.;Kunkeler,P.J.;vanBekkum,H.Catalyticchemistry.Moreover,itmayshedlightontheidentificationofsynthesesofaromaticamines.Catal.Today1997,37,121−136.theactivesites.(3)Huan,T.N.;Ranjbar,N.;Rousse,G.;Sougrati,M.;Zitolo,A.;Mougel,V.;Jaouen,F.;Fontecave,M.Electrochemicalreductionof■CO2catalyzedbyFe-N-Cmaterials:Astructure-selectivitystudy.ACSASSOCIATEDCONTENTCatal.2017,7,1520−1525.*sıSupportingInformation(4)Liu,W.;Zhang,L.;Liu,X.;Liu,X.;Yang,X.;Miao,S.;Wang,TheSupportingInformationisavailablefreeofchargeatW.;Wang,A.;Zhang,T.DiscriminatingcatalyticallyactiveFeNxhttps://pubs.acs.org/doi/10.1021/acs.jpcc.1c00620.speciesofatomicallydispersedFe-N-CcatalystforselectiveoxidationoftheC-Hbond.J.Am.Chem.Soc.2017,139,10790−10798.SEMimages,XRDpatterns,poresizedistributions,each(5)Möller,T.;Ju,W.;Bagger,A.;Wang,X.;Luo,F.;Thanh,T.N.;contentoftheelementindifferentmaterials,andtheVarela,A.S.;Rossmeisl,J.;Strasser,P.EfficientCO2toCOreactionindifferentsolvents(PDF)electrolysisonsolidNi-N-Ccatalystsatindustrialcurrentdensities.EnergyEnviron.Sci.2019,12,640−647.(6)Su,D.S.;Perathoner,S.;Centi,G.Nanocarbonsforthe■AUTHORINFORMATIONdevelopmentofadvancedcatalysts.Chem.Rev.2013,113,5782−5816.CorrespondingAuthors(7)Navalon,S.;Dhakshinamoorthy,A.;Alvaro,M.;Garcia,H.ShuchangWu−SchoolofPharmaceuticalandMaterialsCarbocatalysisbygraphene-basedmaterials.Chem.Rev.2014,114,Engineering,TaizhouUniversity,Taizhou318000,Zhejiang,6179−6212.China;Email:scwu10b@alum.imr.ac.cn(8)Duan,X.;Tian,W.;Zhang,H.;Sun,H.;Ao,Z.;Shao,Z.;Wang,JiangyongDiao−InstituteofMetalResearch,ChineseS.sp2/sp3frameworkfromdiamondnanocrystals:AkeybridgeofAcademyofSciences,Shenyang110016,China;carbonaceousstructuretocarbocatalysis.ACSCatal.2019,9,7494−orcid.org/0000-0001-6266-9322;Email:jydiao@7519.imr.ac.cn(9)Hu,C.;Lin,Y.;Connell,J.W.;Cheng,H.M.;Gogotsi,Y.;HongyangLiu−InstituteofMetalResearch,ChineseAcademyTitirici,M.M.;Dai,L.Carbon-basedmetal-freecatalystsforenergyofSciences,Shenyang110016,China;orcid.org/0000-storageandenvironmentalremediation.Adv.Mater.2019,31,1806128.0003-2977-2867;Email:liuhy@imr.ac.cn(10)Qi,W.;Yan,P.;Su,D.S.OxidativedehydrogenationonAuthorsnanocarbon:Insightsintothereactionmechanismandkineticsviainsituexperimentalmethods.Acc.Chem.Res.2018,51,640−648.GuodongWen−InstituteofMetalResearch,Chinese(11)Nie,R.;Chen,J.;Chen,M.;Qi,Z.;Goh,T.W.;Ma,T.;Zhou,AcademyofSciences,Shenyang110016,China;L.;Pei,Y.;Huang,W.AerobicoxidationoftheC-Hbondunderorcid.org/0000-0002-3531-2771ambientconditionsusinghighlydispersedCooverhighlyporousN-YangSu−DalianInstituteofChemicalPhysics,Chinesedopedcarbon.GreenChem.2019,21,1461−1466.AcademyofSciences,Dalian116023,China(12)Wen,X.;Bai,L.;Li,M.;Guan,J.Atomicallydispersedcobalt-XiaoliPan−DalianInstituteofChemicalPhysics,Chineseandnitrogen-codopedgraphenetowardbifunctionalcatalysisofAcademyofSciences,Dalian116023,Chinaoxygenreductionandhydrogenevolutionreactions.ACSSustainableHuaYan−SchoolofPharmaceuticalandMaterialsChem.Eng.2019,7,9249−9256.Engineering,TaizhouUniversity,Taizhou318000,Zhejiang,(13)Jagadeesh,R.V.;Surkus,A.E.;Junge,H.;Pohl,M.M.;Radnik,ChinaJ.;Rabeah,J.;Huan,H.;Schünemann,V.;Brückner,A.;Beller,M.NanoscaleFe2O3-basedcatalystsforselectivehydrogenationofCompletecontactinformationisavailableat:nitroarenestoanilines.Science2013,342,1073−1076.https://pubs.acs.org/10.1021/acs.jpcc.1c00620(14)Jagadeesh,R.V.;Junge,H.;Pohl,M.M.;Radnik,J.;Brückner,A.;Beller,M.SelectiveoxidationofalcoholstoestersusingNotesheterogeneousCo3O4-N@Ccatalystsundermildconditions.J.Am.Theauthorsdeclarenocompetingfinancialinterest.Chem.Soc.2013,135,10776−10782.(15)Cui,X.;Li,Y.;Bachmann,S.;Scalone,M.;Surkus,A.E.;Junge,■K.;Topf,C.;Beller,M.Synthesisandcharacterizationofiron-ACKNOWLEDGMENTSnitrogen-dopedgraphene/core-shellcatalysts:EfficientoxidativeThisworkwassupportedbytheNationalKeyR&DProgramdehydrogenationofN-heterocycles.J.Am.Chem.Soc.2015,137,ofChina(2016YFA0204100),theNationalNaturalScience10652−10658.FoundationofChina(91845201,21961160722,and(16)Chen,F.;Surkus,A.E.;He,L.;Pohl,M.M.;Radnik,J.;Topf,21703261),theLiaoningRevitalizationTalentsProgramC.;Junge,K.;Beller,M.SelectivecatalytichydrogenationofXLYC1907055,andtheSinopecChina.GuangxiKeyheteroareneswithN-graphene-modifiedcobaltnanoparticlesLaboratoryofInformationMaterials(GuilinUniversityof(Co3O4-Co/NGr@α-Al2O3).J.Am.Chem.Soc.2015,137,11718−11724.ElectronicTechnology),Project191005-K,ZhejiangProvin-(17)Varela,A.S.;Ju,W.;Strasser,P.Molecularnitrogen-carboncialNaturalScienceFoundationofChina(LQ20B060001)catalysts,solidmetalorganicframeworkcatalysts,andsolidmetal/andTaizhouScienceandTechnologyPlanningProjectnitrogen-dopedcarbon(MNC)catalystsfortheelectrochemicalCO2(1902gy20).S.W.thanksProf.ZailaiXie,GuangmingWang,reduction.Adv.EnergyMater.2018,8,1703614.XuefeiZhang,andDr.DehuaWangforthenitrogen(18)Yuan,M.;Long,Y.;Yang,J.;Hu,X.;Xu,D.;Zhu,Y.;Dong,Z.adsorption−desorptionmeasurementsandsuggestions.Biomasssucrose-derivedcobalt@nitrogen-dopedcarbonforcatalytic5134https://dx.doi.org/10.1021/acs.jpcc.1c00620J.Phys.Chem.C2021,125,5127−5135

8TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticletransferhydrogenationofnitroareneswithformicacid.ChemSusChem(37)Liang,H.W.;Brüller,S.;Dong,R.;Zhang,J.;Feng,X.;Müllen,2018,11,4156−4165.K.Molecularmetal-Nxcentresinporouscarbonforelectrocatalytic(19)Sun,X.;Olivos-Suarez,A.I.;Osadchii,D.;Romero,M.J.V.;hydrogenevolution.Nat.Commun.2015,6,7992.Kapteijn,F.;Gascon,J.SinglecobaltsitesinmesoporousN-doped(38)Li,B.Q.;Zhao,C.X.;Liu,J.N.;Zhang,Q.Electrosynthesisofcarbonmatrixforselectivecatalytichydrogenationofnitroarenes.J.hydrogenperoxidesynergisticallycatalyzedbyatomicCo-Nx-CsitesCatal.2018,357,20−28.andoxygenfunctionalgroupsinnoble-metal-freeelectrocatalysts.(20)Wu,H.;Li,H.;Zhao,X.;Liu,Q.;Wang,J.;Xiao,J.;Xie,S.;Si,Adv.Mater.2019,31,1808173.R.;Yang,F.;Miao,S.;etal.HighlydopedandexposedCu(I)-Nactive(39)Xie,J.;Kammert,J.D.;Kaylor,N.;Zheng,J.W.;Choi,E.;siteswithingraphenetowardsefficientoxygenreductionforzinc-airPham,H.N.;Sang,X.;Stavitski,E.;Attenkofer,K.;Unocic,R.R.;etal.AtomicallydispersedCoandCuonN-dopedcarbonforbatteries.EnergyEnviron.Sci.2016,9,3736−3745.reactionsinvolvingC-Hactivation.ACSCatal.2018,8,3875−3884.(21)Guo,Z.;Xie,Y.;Xiao,J.;Zhao,Z.J.;Wang,Y.;Xu,Z.;Zhang,(40)Hu,X.;Long,Y.;Fan,M.;Yuan,M.;Zhao,H.;Ma,J.;Dong,Z.Y.;Yin,L.;Cao,H.;Gong,J.Single-atomMn-N4site-catalyzedTwo-dimensionalcovalentorganicframeworksasself-templateperoxonereactionfortheefficientproductionofhydroxylradicalsinderivednitrogen-dopedcarbonnanosheetsforeco-friendlymetal-anacidicsolution.J.Am.Chem.Soc.2019,141,12005−12010.freecatalysis.Appl.Catal.,B2019,244,25−35.(22)Yang,F.;Wang,M.;Liu,W.;Yang,B.;Wang,Y.;Luo,J.;Tang,(41)Wu,S.;Yu,L.;Wen,G.;Xie,Z.;Lin,Y.RecentprogressofY.;Hou,L.;Li,Y.;Li,Z.;etal.AtomicallydispersedNiastheactivecarbon-basedmetal-freematerialsinthermal-drivencatalysis.J.Energysitetowardsselectivehydrogenationofnitroarenes.GreenChem.Chem.2021,58,318−335.2019,21,704−711.(23)Li,Z.;Wang,C.;Chen,X.;Wang,X.;Li,X.;Yamauchi,Y.;Xu,X.;Wang,J.;Lin,C.;Luo,D.;etal.MoOxnanoparticlesanchoredonN-dopedporouscarbonasLi-ionbatteryelectrode.Chem.Eng.J.2020,381,122588.(24)Zhang,J.;Zhao,H.;Li,J.;Jin,H.;Yu,X.;Lei,Y.;Wang,S.Insituencapsulationofironcomplexnanoparticlesintobiomass-derivedheteroatom-enrichedcarbonnanotubesforhigh-performancesuper-capacitors.Adv.EnergyMater.2019,9,1803221.(25)Sahoo,B.;Formenti,D.;Topf,C.;Bachmann,S.;Scalone,M.;Junge,K.;Beller,M.Biomass-derivedcatalystsforselectivehydro-genationofnitroarenes.ChemSusChem2017,10,3035−3039.(26)Yang,L.;Zeng,X.;Wang,D.;Cao,D.Biomass-derivedFeNialloyandnitrogen-codopedporouscarbonsashighlyefficientoxygenreductionandevolutionbifunctionalelectrocatalystsforrechargeableZn-airbattery.EnergyStorageMater.2018,12,277−283.(27)Zhang,Y.;Lu,L.;Zhang,S.;Lv,Z.;Yang,D.;Liu,J.;Chen,Y.;Tian,X.;Jin,H.;Song,W.Biomasschitosanderivedcobalt/nitrogendopedcarbonnanotubesfortheelectrocatalyticoxygenreductionreaction.J.Mater.Chem.A2018,6,5740−5745.(28)Fu,H.;Zhao,P.;Xu,S.;Cheng,G.;Li,Z.;Li,Y.;Li,K.;Ma,S.FabricationofFe3O4andgraphitizedporousbiocharcompositesforactivatingperoxymonosulfatetodegradep-hydroxybenzoicacid:Insightsonthemechanism.Chem.Eng.J.2019,375,121980.(29)Chen,W.;Pan,X.;Bao,X.Tuningofredoxpropertiesofironandironoxidesviaencapsulationwithincarbonnanotubes.J.Am.Chem.Soc.2007,129,7421−7426.(30)Sing,K.S.W.Reportingphysisorptiondataforgas/solidsystems.PureAppl.Chem.1982,54,2201−2218.(31)Sadezky,A.;Muckenhuber,H.;Grothe,H.;Niessner,R.;Pöschl,U.Ramanmicrospectroscopyofsootandrelatedcarbona-ceousmaterials:Spectralanalysisandstructuralinformation.Carbon2005,43,1731−1742.(32)Liang,H.W.;Wei,W.;Wu,Z.S.;Feng,X.;Müllen,K.Mesoporousmetal-nitrogen-dopedcarbonelectrocatalystsforhighlyefficientoxygenreductionreaction.J.Am.Chem.Soc.2013,135,16002−16005.(33)Su,D.S.;Wen,G.;Wu,S.;Peng,F.;Schlögl,R.Carbocatalysisinliquid-phasereactions.Angew.Chem.,Int.Ed.2017,56,936−964.(34)Wang,D.;Xiao,L.;Yang,P.;Xu,Z.;Lu,X.;Du,L.;Levin,O.;Ge,L.;Pan,X.;Zhang,J.;etal.Dual-nitrogen-sourceengineeredFe-Nxmoietiesasaboosterforoxygenelectroreduction.J.Mater.Chem.A2019,7,11007−11015.(35)Bai,L.;Duan,Z.;Wen,X.;Si,R.;Guan,J.Atomicallydispersedmanganese-basedcatalystsforefficientcatalysisofoxygenreductionreaction.Appl.Catal.,B2019,257,117930.(36)Li,H.;Qian,J.;Pan,B.N-coordinatedCocontainingporouscarbonascatalystwithimproveddispersityandstabilitytoactivateperoxymonosulfatefordegradationoforganicpollutants.Chem.Eng.J.2021,403,126395.5135https://dx.doi.org/10.1021/acs.jpcc.1c00620J.Phys.Chem.C2021,125,5127−5135

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
最近更新
更多
大家都在看
近期热门
关闭