Co-Doped Ni 3 N Nanosheets with Electron Redistribution as Bifunctional Electrocatalysts for E ffi cient Water Splitting - Wang et al. -

Co-Doped Ni 3 N Nanosheets with Electron Redistribution as Bifunctional Electrocatalysts for E ffi cient Water Splitting - Wang et al. -

ID:81816505

大小:7.65 MB

页数:7页

时间:2023-07-20

上传者:U-14522
Co-Doped Ni 3 N Nanosheets with Electron Redistribution as Bifunctional Electrocatalysts for E ffi cient Water Splitting - Wang et al. -_第1页
Co-Doped Ni 3 N Nanosheets with Electron Redistribution as Bifunctional Electrocatalysts for E ffi cient Water Splitting - Wang et al. -_第2页
Co-Doped Ni 3 N Nanosheets with Electron Redistribution as Bifunctional Electrocatalysts for E ffi cient Water Splitting - Wang et al. -_第3页
Co-Doped Ni 3 N Nanosheets with Electron Redistribution as Bifunctional Electrocatalysts for E ffi cient Water Splitting - Wang et al. -_第4页
Co-Doped Ni 3 N Nanosheets with Electron Redistribution as Bifunctional Electrocatalysts for E ffi cient Water Splitting - Wang et al. -_第5页
Co-Doped Ni 3 N Nanosheets with Electron Redistribution as Bifunctional Electrocatalysts for E ffi cient Water Splitting - Wang et al. -_第6页
Co-Doped Ni 3 N Nanosheets with Electron Redistribution as Bifunctional Electrocatalysts for E ffi cient Water Splitting - Wang et al. -_第7页
资源描述:

《Co-Doped Ni 3 N Nanosheets with Electron Redistribution as Bifunctional Electrocatalysts for E ffi cient Water Splitting - Wang et al. -》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

pubs.acs.org/JPCLLetterCo-DopedNi3NNanosheetswithElectronRedistributionasBifunctionalElectrocatalystsforEfficientWaterSplittingMengWang,WansenMa,ZepengLv,DongLiu,KailiangJian,andJieDang*CiteThis:J.Phys.Chem.Lett.2021,12,1581−1587ReadOnlineACCESSMetrics&MoreArticleRecommendations*sıSupportingInformationABSTRACT:Preparationofhigh-activityandearth-abundantbifunctionalcatalystsforefficientelectrochemicalwatersplittingarecrucialandchallenging.Herein,Co-dopedNi3Nnanosheetsloadedonnickelfoam(Co−Ni3N)weresynthesized.Theas-preparedCo−Ni3Nexhibitsexcellentcatalyticactivitytowardboththehydrogenevolutionreaction(HER)andtheoxygenevolutionreaction(OER)inalkalinemedia.Densityfunctionaltheory(DFT)calculationrevealsthatCo−Ni3NwithredistributionofelectronsnotonlycanfacilitatetheHERkineticsbutalsocanregulateintermediatesadsorptionenergiesforOER.Specifically,theCo−Ni3Nexhibitshighefficiencyandstablecatalyticactivity,withanoverpotentialofonly30and270mVatacurrentdensityof10mAcm−2fortheHERandOERin1MKOH,respectively.ThisworkprovidesstrongevidencetothemeritofCodopingtoimprovetheinnateelectrochemicalperformanceinbifunctionalcatalysts,whichmighthaveacommonimpactinmanysimilarmetal−metalnitrideelectrocatalysts.lectrochemicalwatersplittinghasbeenenvisagedasafast,intheNi3N−VNmodel(Ni3N−VN−OL)wouldimprovetheE19high-efficiencyandeco-friendlytechnologytogenerateOERperformanceaswell.Inlightoftheselatestreports,high-purityhydrogenusingelectricityfromsolarandotherfromtheperspectiveofbifunctionalcatalysts,artificially1−3greenenergy,andelectrochemicalhydrolysiscanundoubt-adjustingtheinternalelectronicdistribution(electrontransfer)edlyslowdowntheconsumptionofconventionalfossilfuelsoftheNi3N-basedcatalystisaveryimportantmeansto4−6andreducethepressureofenvironmentalpollution.optimizethecatalyticperformance.Hence,weraiseaquestionNevertheless,boththeoxygenevolutionreaction(OER)andwhetheritispossibletoredistributetheinternalelectronsofthehydrogenevolutionreaction(HER)requirealargeNi3NbyCodoping,soastoachievetheeffectofoptimizingoverpotential,whichinevitablylimitstheapplicationoftotalthecatalyticperformance.Researchonthisissuecanuncover7,8hydrolysisinindustrialpractice.Althoughnoblemetal-basedtheessentialmechanismofCo−Ni-basedcatalystsforHERDownloadedviaUNIVOFCONNECTICUTonMay16,2021at12:46:07(UTC).catalystsexhibittheoutstandingperformanceforOER(IrO2,andOER.9,107,11RuO2)andHER(Pt-basedcatalysts),theabundanceofHerein,wereportaCo-dopedNi3NnanosheetswiththeSeehttps://pubs.acs.org/sharingguidelinesforoptionsonhowtolegitimatelysharepublishedarticles.noblemetalsontheearthandtheirexpensivepricesseverelyoptimalkineticconditionsandfreeenergiesofΔGH*.Usinglimittheirapplications.theself-sacrificeofnanosheetarrayprecursortosynthesizeaTherefore,researchershavefocusedontransitionmetalCo−Ni3Nnanosheetfacilitatestheredistributionofelectrons12,13compounds,suchastransitionmetalnitrides(TMNs),andfavorstheoptimizationofwaterabsorptionenergies.Asa14,15transitionmetalcarbides(TMCs),andtransitionmetalconsequence,thenanosheetsshowasuperioralkalineHER16phosphides(TMPs),whicharewidelydistributedontheperformancewithanoverpotentialof30mVandanultralowearth.Amongthem,TMNspossessuniquehighmetallic−19Tafelslopeof41.6mVdec(onlyhalfofthatofNi3N)at10properties.AnovelbifunctionalRu/Ni3N−NipowdercatalystmAcm−2.Asdual-functionalelectrocatalysts,Co−Ni3Nwasprepared,anditwasfoundthatthesynergisticeffectofelectroderequiressmalloverpotentialsof270mVandthebimetalliccatalystcouldenhancetheconductivityand−1−29Tafelslopeis94mVdecat10mAcmforOER.TheacceleratetheelectronredistributionintheHERprocess.1718BothSunetal.andZhuetal.reportedthatthelarge-scaleelectronredistributionbetweentheinterfaceofCoandNiReceived:December25,2020wouldimprovetheNiNelectrocatalyticperformanceofHERAccepted:February1,20213andOER.IthasbeenverifiedthatthetypeofanionwouldalsoPublished:February4,2021affecttheorientationofelectronredistributionbetweentheNiandVphases,whichwasverycrucialforenhancingtheelectrocatalyticactivity,andtheintroductionofOspeciesinto©2021AmericanChemicalSocietyhttps://dx.doi.org/10.1021/acs.jpclett.0c038041581J.Phys.Chem.Lett.2021,12,1581−1587

1TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterturnoverfrequency(TOF)valueforHERoftheCo−Ni3NtoobtainCo−Ni3N(asshowninExperimentalSection).Thenanosheetis1.2s−1at100mV,whichexceedsmostoftheproportion(0−10%)ofCo-dopingiscontrolledbychangingreportedcatalystsusuallybelow1.0s−1.16TheTOFvaluefortheamountofcobaltnitrateaddedduringthesynthesis.OERis0.21s−1at300mV.BybothexperimentandDFTScanningelectronmicroscopy(SEM)images(Figure2a−c)calculation,ourresearchprovidesstrongevidencetoconfirmrevealtheformationofCo−Ni3NnanosheetsattachedwiththatCodopingisbeneficialtoimprovingtheinnatenanoparticles.AsshowninFigureS1,byobservingtheSEMelectrochemicalperformanceforbifunctionalcatalysts,whichimagesofCo−Ni3Nwithdifferentdopinglevels,itcanbemightbeacommonimpactinsimilarmetal−metalnitridesverifiedthattheamountofcobalthasatremendousimpactonelectrocatalysts.theformationofnanosheets.Highcontentofcobalt(10%)isAsshowninFigure1,thecorrespondingCo-dopedconducivetoinheritingtheflakestructure.WhenthecontentNi(OH)2(Co−Ni(OH)2)nanosheetsarraywasdirectlyofcobaltis2%,theannealingprocesscausesmostoftheflakestructuretocollapse,while5%Codopingistheoptimalamount,becauseitnotonlycanensurethenanosheetsnottocollapsebutalsocanfacilitateformingacertainamountofnanoparticles,whichincreasestheeffectivesurfaceareaandpromoteselectrontransport.FigureS2aandFigureS2bshowtheSEMimagesoftheas-preparedCo−Ni(OH)2nanosheetarrayattachedonthebarenickelfoamcompletely.Duringthesubsequentnitridationprocesses,Ni(OH)2wasgraduallyreducedtoNi3N,andwithoutaddingcobalt,thesinteringofproductsoccurredintheentirenanosheetarrayandnano-sheetswerecompletelybroken(FigureS2c,d).Inaddition,transmissionelectronmicroscopy(TEM)imagesclearlyprovidefurtherinsightsregardingtheflakestructureofCo−Ni3N,whichcanprovideawealthofactivesitesfortheHERandOER(Figure2d,eandFigureS2e,f).HRTEMimage(Figure2fandFigureS2g)clearlyexhibitsthedistanceFigure1.SchematicillustrationofthefabricationforCo−Ni3N.betweenplanesof0.23nmcorrespondingtotheNi3N(110).Elementalmappings(Figure2g−j)clearlymanifestthatCo−Ni3NconsistsmainlyofNi,Co,andN.grownonNifoambyahydrothermalmethod;then,theTocertifythechemicalcompositionandelectronicstructureCo−Ni(OH)2wascalcinedunderNH3atmosphereat350°CofCo−Ni3N,XRDandXPSwerefurtherperformed.AsshownFigure2.(a)−(c)SEM,(d,e)TEM,and(f)HRTEMimagesofthepreparedCo−Ni3Nnanosheets.(g)HAADF-STEMimageandtheelementalmappingimagesofNi(h),Co(i),andN(j).1582https://dx.doi.org/10.1021/acs.jpclett.0c03804J.Phys.Chem.Lett.2021,12,1581−1587

2TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterFigure3.(a)XRDpatterns.(b)XPSsurveyspectrumofCo−Ni3N.High-resolutionNi2p(c),N1s(e),andO1s(f)XPSspectraofCo−Ni3NandNi3N.(d)High-resolutionXPSspectraofCo2pforCo−Ni3N.Figure4.(a)LSVcurves,(b)Tafelplots,and(c)theNyquistplots(fittedusinganequivalentcircuitinFigureS7a;inset,magnifiedimage)ofCo−Ni3N,Ni3N,Co−Ni(OH)2,NF,andPt/CforHER.(d)LSVcurvesand(e)TafelplotsofCo−Ni3N,Ni3N,Co−Ni(OH)2,andNFforOER.(f)ComparisonofCo−Ni3Nwithotherworks.inFigure3a,thephasesofNi(JCPDSNo.04-0850)andNi3NthattheXRDpatternofCo−Ni3Nhasasignificantleftshift,(JCPDSNo.10-0280)weredetectedintheproducts,andNiiswhichiscausedbyCodoping.Thedetailsofcrystalstructuresfromnickelfoam(NF)whileNi3Nisfromthenanosheets.ByofphasesinCo−Ni3NweresummarizedinTableS1.ThecomparingtheXRDpatternsofCo−Ni3NandNi3N,wefindformationofCo−Ni3Nnanosheetswasfurthersupportedby1583https://dx.doi.org/10.1021/acs.jpclett.0c03804J.Phys.Chem.Lett.2021,12,1581−1587

3TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetter−−X-rayphotoelectronspectroscopy(XPS).InFigure3b,theHeyrovskystep:H*+e+HO22⇋H+OH(iia)XPSsurveyspectraexhibitthepresenceofNi,Co,N,andOspecies.Figure3cshowscharacteristicpicksofNi2pintheorTafelstep:2H*⇋H2(iib)bindingenergyrangeof852−884eV.Duetotheslightwhere*representsanactivesiteontheelectrocatalystsurface19oxidization,thepeakobservedat856.0eVbelongstoNi−O.andH*representsahydrogenatomadsorbedonanactivesite.Thebindingpeakat861.7eVisdefinedasthesatellitepeaksofHere,Figure4billustratesthattheslopeoftheTafelplotof19theNi2p3/2corelevel.Tworelativelyweakpeaksat873.4Co−NiNisapproximately41.6mVdec−1,muchlowerthan3and879.2eVareattributedtotheNi2p1/2andNi2p3/2,whichthoseofNiN(74.3mVdec−1),Co−Ni(OH)(200mV4,7,20,2132verifiestheformationofdivalentNi.TheCo2pXPSdec−1),andNF(192.4mVdec−1)andslightlyworsethanthatspectrumcanbedeconvolutedintothreepeaks(Figure3d),ofthecommercialPt/C(24.6mVdec−1),supportingtherapidthepeakslocatedat782.7and793.8eVcanbeattributedtoreactionkineticsofCo−Ni3N.Justasweexpected,compared22,23Co2p3/2andCo2p1/2spinstateofCo(II).Meanwhile,thetoplotsforNi3NwithoutCo,theslopeoftheTafelplotofpeakat778.1eVcorrespondstotheCospeciesintheCo−Ni3Nisreducedbynearlyhalf.Furthermore,Co−Ni3N16nitride.AspresentedinFigure3e,theN1sspectrahastwonanosheetswithinitialCoconcentrationsof2%and10%werestrongpeaksat397.8and398.8eVthatcorrespondtoN−synthesized(FigureS5)andconfirmthatdifferentdoping4,18,19Ni.Thesharppeaksat399.8and400.2eVareascribedtolevelsarealsovitaltoyieldanexcellentcatalystforHER.TheresidualNHmoietiesofincompletereactionwithNH3,whileturnoverfrequency(TOF)value(FigureS6)forCo−Ni3Nis4,17,20,24theshorterpeakat396.8eVresultsfromCo−N.The1.2s−1at100mV,whichismuchlargerthanvaluesforthesepresenceofoxide-containingspecies(Figure3f)aresupportedcatalystsat100mVintheliterature(usuallybelow1.0bytheemergenceofNi−OandNi−OHatabout530.9ands−1).40,4119,25532.4eV,respectively,whichisinfavoroftheOER.AllofElectrochemicalimpedancespectroscopy(EIS)testsweretheseresultsshowthesuccessfulsynthesisofCo-dopedNi3N.employedtodeterminetheresistanceofsurfacechargetransferObviously,theNi2ppeaksinCo−Ni3Nexhibitapositiveshift(Rct).AsshowninFigure4candFigureS7,asmallerdiameterof0.1eVcomparedtothepeaksforNi3N(Figure3c).OnthesemicirclecorrespondstoasmallerRct,fastelectrontransfercontrary,anegativeshiftof0.2eVappearsforN1sandO1scapability,andthefavorablereactionkinetics.42Notably,Co−ofCo−Ni3NrelativetoNi3N(Figure3e,f).TheaboveanalysisNi3NexhibitsthesmallestRct.TheCdlcurveoriginatedfromshowstheoxidationofnitride,andtheformationoftransitionCVcanbedirectlyusedtoevaluatetheelectrochemicallymetaloxideorhydroxide,whichisbeneficialtoalkalineactivesurfaceareas.AsshowninFigureS7b,Co−Ni3N26,27OER.TheshiftsalsoindicatethatNiwasoxidizedinCo−exhibitsahigherC(9.3mFcm−2)thanthoseofNiN(4.6dl3Ni3NduetotheroleofCodoping.TheseresultsprovethemFcm−2),Co−Ni(OH)(0.7mFcm−2),andNF(0.5mF2electronredistributionofCo−Ni3N,whichnotonlycancm−2).ThisalsoprovesthatthesynergybetweentheelectronfacilitatetheconductivitybutalsocanregulatetheadsorptionredistributionandnanosheetstructureofCo−Ni3Nincreasesenergyandenergeticbarrierofdissociationofactivespeciestheexposedactivesites.Evaluatingtheelectrochemical(H*,H2O*,OH*,O*,andOOH*)duringwaterdissocia-stabilityoftheelectrocatalystisanotherimperativespecifica-19,28,29tion.Furthermore,FigureS3a,bexhibitstheXRDtion.Cyclicvoltammetry(CV,FigureS7c−f)wasconductedinpatternsofNi3NandCo−Ni(OH)2,andXPSsurveyspectraanon-Faradaicregion(10−60mVs−1).Moreover,theofNi3NandCo−Ni(OH)2areexhibitedinFigureS3c,d,continuousCV(FigureS8a)andchronoamperometry(Figurerespectively.Toexplorethesurfacecompositionofthecatalyst,S8b)resultsdisplaystheexcellentstabilityofCo−Ni3N.ThetheRamanspectra(FigureS4)ofCo−Ni3Ndisplaytwogeometricalexchangecurrentdensities(j0,geometrical)ofCo−representativepeaksaround550and1110cm−1,whichcanbeNi3N,Ni3N,Co−Ni(OH)2,andNFare2.25,1.58,2.10,andascribedtoNi3Nandthesurfaceoxidationofnitridesunder2.15mAcm−2,respectively,whicharedeterminedby30−33air.collectingtheinterceptofthelinearregionoftheTafelThemeritsofCo-dopedNi3Nnanosheets(goodcon-plots.Obviously,Co−Ni3Nhasalargerj0,whichisconnectedductivity,largespecificsurfacearea,abundantactivesites,withevenmoreremarkableelectrocatalyticactivity.electronredistribution,ect.)makeitdemonstrateasuperiorForOERapplication,weevaluatedthecatalyticperformanceelectrochemicalperformance.AsshowninFigure4a,weofCo−Ni3NtowardOERinalkalinemedia.TheCo−Ni3NdisplayedtheelectrocatalyticHERperformancesofCo−Ni3N,electroderequiresthesmallestoverpotentialof270mVattheNi3N,Co−Ni(OH)2,NF,andPt/Cin1MKOHsolution.currentdensitiesof10mAcm−2comparedwithNiN,Co−3Apparently,Co−Ni3Ndisplaysoverpotentialsof30mV(η10)Ni(OH)2,andNFof360,425,and470mV,respectivelyand135mV(η100),whichshowsaclearenhancement(Figure4d).Whenthecurrentdensityis50mA,thecomparedwithitscounterpartsNi3N(η10=65mV),Co−overpotentialofCo−Ni3N,Ni3N,Co−Ni(OH)2,andNFareNi(OH)2(η10=260mV),andNF(η10=278mV).Tofurther380,522,606,and684mV.Moreover,theoverpotentialonlydemonstrateasuperiorHERperformanceofCo−Ni3N,weincreasesby5mVafter1000cyclesat10mAcm−2(Figurecomparetheoverpotentialsatthecurrentdensityof50mAS8c)andtheresultofchronoamperometryalsodisplaysitscm−2.TheoverpotentialsofCo−NiN,NiN,Co−Ni(OH),332excellentstability(FigureS8d).TheTafelslopesforCo−NF,andPt/Care87,158,364,387,and64mV,respectively.Ni3N,Ni3N,Co−Ni(OH)2,andNFare94,184,215,and216Notably,theactivityofCo−Ni3NevenexceedscommercialmVdec−1,respectively(Figure4e).TheTOFvalueforOERatPt/C(η10=37mV)andmostnon-noblemetal-basedcatalysts300mVis0.21s−1(FigureS9).ThegoodactivityofCo−NiN3at10mAcm−2.Accordingtothelatestliterature,theoverallisascribedtotheelectrontransferbetweenCoandNispeciesHERreactionshavebeenwrittenwithhydroxideions(two-inCo−Ni3N,providingsufficientenergyfortheadsorption23,34−39step)inalkalinemedia:anddesorptionofoxygenspecies.TofurtherstudythechangesofthecatalystsurfacebeforeandafterOERtest,theXPS−−Volmerstep:HO2+e+*⇋*+HOH(i)(FiguresS10and11)andTEM(FigureS12)analyseswere1584https://dx.doi.org/10.1021/acs.jpclett.0c03804J.Phys.Chem.Lett.2021,12,1581−1587

4TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterFigure5.(a)Hadsorptionfree-energydiagramfortheCo−Ni3NandNi3Nsurfaces.(b)H2OadsorptionenergyfortheCo−Ni3NandNi3Ncatalysts.(c)Speculatedfour-electronmechanismofOERonCo−Ni3Nnanosheets.(d,e)AdsorptionenergydiagramsforOERonCo−Ni3NandNi3N.(f)Densityofstates(DOS)ofCo−Ni3NandNi3Nsystems.performedaftertheOERtest.InFigureS11a,the5d,thethirdstep(O*→OOH*)istheRDSintheentiredeconvolutionofpeaks(Ni2p3/2andNi−O)areleft-shiftedOERreactions.Obviously,asshowninFigure5d,theRDSforto855.8and861.5eVaftertheOERtest,respectively,whichisCo−Ni3Nisdecreasedto1.8eV,whichismuchsmallerthancausedbytheoxidationofNi.Moreover,theO1sspectrumthatforNi3N(RDS=2.07eV).Intuitively,theseresultsshowsahigherproportionofNi−Ospecies,furtherindicatingconfirmthattheCo−Ni3NmodeliswithmorefavorableOERthesurfaceoxidation(FigureS11d).Itismarkedlythatthereactionkinetics.Inaddition,Figure5econfirmsthatallfourHERandOERelectrocatalyticpropertyofCo−Ni3NareofstepsonthesurfaceofCo−Ni3NhaveacertainenergybarrierthefirstwatertotheNi-basedelectrocatalystsreportedsofaratU=0V.WhentheUincreasesto1.23V,theOERprocess(Figure4f,TablesS3−S5).Thepreparedcatalystcanbecannotproceedspontaneouslyfromstep2tostep4.WhenUutilizedfortheoverallwatersplittingreactionaswellandtheis1.8Vcorrespondingtothetheoreticaloverpotentialof0.57specificdetailscanbeseeninFigureS13.V,thewholeOERcoursecanbeconductedspontaneously.DFTcalculationswerecarriedouttoresearchtheimpactsofFurthermore,Co−Ni3Nshowsalargerdensityofstate(DOS)CodopingonNi3Nnanosheets.ThecrystalmodelsoftheneartheFermilevel(Figure5f),revealingthatCo−Ni3NCo−Ni3N(001)planeandtheNi3N(001)planearedisplayednanosheetshasahigherconductivityandfasterelectroninFigureS13.Inalkalinemedia,theHERprocesscanbetransport,whichiscorrespondingtotheEIStestresultsanddividedintotheinitialsample-H2O,theintermediatesample-theelectroninteractionafterCodoping.H*,andthefinalsample-H2.AtheoreticalidealvaluewithInsummary,wesuccessfullypreparedCo-dopedNi3NΔGH*≈0eVisfavorablefortheHER.TheΔGH*onCo−nanosheetsasbifunctionalelectrocatalystsforefficientwaterNi3Nis≈−0.18eV,whichismuchcloserto0thanthatonsplitting.CodopingrealizesthemodulationofelectronNi3N(−0.73eV)(Figure5a).TheaboveanalysisindicatestheredistributionandregulatestheadsorptionenergiesofOERadvantageousH*adsorptionkineticsonCo−Ni3Nfortheintermediates,hydrogen,andwatermoleculesandthusHER.TheH2Oadsorptionenergiesare≈−0.75and−0.49eVdecreasestheenergeticbarriersofHERandOER.WhentheforCo−Ni3NandNi3N,respectively(Figure5b).AstrongcharacteristicsofincreasedaccessiblesurfaceareaandH2OadsorptionenergyguaranteeseffectiveH2Oadsorptionfacilitatedelectrontransportarecombined,theCo−Ni3Nontheelectrocatalyst,whichissignificantfortheHERprocess.nanosheetsexhibitexcellentHERandOERperformancesin1TogetadeeperinsightontheOERactivityofCo−NiN,weMKOH.Theelectrodedelivers10mAcm−2atalow3adoptedatypicalfour-stepprocess,whichmainlyincludesoverpotentialofonly30mVandasmallTafelslopeof41.6threeintermediates(*OH,*O,and*OOH)(Figure5c).mVdec−1fortheHER(closetothoseofcommercialPt/C),Furthermore,wehaveconstructedthetheoreticalstructureandatanoverpotentialof270mVandTafelslopeof94mVmodelstoevaluatetheeffectofCodopingontheOERactivitydec−1fortheOER,whicharesuperiortothoseofNiN,Co−3(FigureS14).ΔGforeachbasicstepwasusedtoclarifytheNi(OH)2,andNF1MKOH.ThisworkprovidesanovelintrinsicactivityforOER,amongthesesteps,wherethestepstrategyforthedevelopmentofhigh-efficiencybifunctionalshowingthehighestΔGsymbolizestherate-determiningstepcatalystsforwatersplittingbasedonthemetal−metalnitrides(RDS).ForCo−Ni3NandNi3Nmodels,asverifiedinFigureelectrocatalysts.1585https://dx.doi.org/10.1021/acs.jpclett.0c03804J.Phys.Chem.Lett.2021,12,1581−1587

5TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetter■ASSOCIATEDCONTENTRecyclingofNonferrousMetals(18LHPY015).Thanksare*sıSupportingInformationalsogiventothesupportfromschoolofchemistryandTheSupportingInformationisavailablefreeofchargeatchemicalengineeringofChongqingUniversityfortheDFThttps://pubs.acs.org/doi/10.1021/acs.jpclett.0c03804.calculations.Experimentalandcomputationaldetails;SEM,TEM,HRTEM,andHAADF-STEMimages,XRDpatterns,■REFERENCESXPSspectra,Ramanspectrum,polarizationcurves,Tafel(1)Ni,W.;Krammer,A.;Hsu,C.S.;Chen,H.M.;Schüler,A.;Hu,plots,turnoverfrequencycurves,Nyquistplots,CVX.Ni3NasanActiveHydrogenOxidationReactionCatalystincurves,I−tcurves,structures;tablesofcrystaldata,AlkalineMedium.Angew.Chem.,Int.Ed.2019,58(22),7445−7449.samplemasses,HERandOERperformancecomparison(2)Liu,C.;Gong,T.;Zhang,J.;Zheng,X.;Mao,J.;Liu,H.;Li,Y.;withthatofotherelectrocatalysts(PDF)Hao,Q.EngineeringNi2P-NiSe2heterostructureinterfaceforhighlyefficientalkalinehydrogenevolution.Appl.Catal.,B2020,262,118245.■AUTHORINFORMATION(3)Niu,S.;Fang,Y.;Zhou,J.;Cai,J.;Zang,Y.;Wu,Y.;Ye,J.;Xie,CorrespondingAuthorY.;Liu,Y.;Zheng,X.;Qu,W.;Liu,X.;Wang,G.;Qian,Y.JieDang−CollegeofMaterialsScienceandEngineering,ManipulatingthewaterdissociationkineticsofNi3NnanosheetsviainChongqingUniversity,Chongqing400044,PRChina;Statesituinterfacialengineering.J.Mater.Chem.A2019,7(18),10924−KeyLaboratoryofAdvancedProcessingandRecyclingof10929.Non-ferrousMetals,LanzhouUniversityofTechnology,(4)Hu,S.;Feng,C.;Wang,S.;Liu,J.;Wu,H.;Zhang,L.;Zhang,J.Lanzhou730050,PRChina;orcid.org/0000-0003-Ni3N/NFasBifunctionalCatalystsforBothHydrogenGenerationandUreaDecomposition.ACSAppl.Mater.Interfaces2019,11(14),1383-8390;Email:jiedang@cqu.edu.cn13168−13175.Authors(5)Kannimuthu,K.;Sangeetha,K.;Sankar,S.S.;Karmakar,A.;MengWang−CollegeofMaterialsScienceandEngineering,Madhu,R.;Kundu,S.InvestigationonnanostructuredCu-basedelectrocatalystsforimprovisingwatersplitting:areview.Inorg.Chem.ChongqingUniversity,Chongqing400044,PRChina;Front.2021,8,234−272.ChongqingKeyLaboratoryofVanadium−Titanium(6)Wang,S.;Jiao,S.;Tian,D.;Chen,H.S.;Jiao,H.;Tu,J.;Liu,Y.;MetallurgyandNewMaterials,ChongqingUniversity,Fang,D.N.ANovelUltrafastRechargeableMulti-IonsBattery.Adv.Chongqing400044,PRChinaMater.2017,29(16),1606349.WansenMa−CollegeofMaterialsScienceandEngineering,(7)Wang,P.;Qin,R.;Ji,P.;Pu,Z.;Zhu,J.;Lin,C.;Zhao,Y.;Tang,ChongqingUniversity,Chongqing400044,PRChina;H.;Li,W.;Mu,S.SynergisticCouplingofNiNanoparticleswithChongqingKeyLaboratoryofVanadium−TitaniumNi3CNanosheetsforHighlyEfficientOverallWaterSplitting.SmallMetallurgyandNewMaterials,ChongqingUniversity,2020,16(37),2001642.Chongqing400044,PRChina(8)Shao,Q.;Liu,J.;Wu,Q.;Li,Q.;Wang,H.;Li,Y.;Duan,Q.InZepengLv−CollegeofMaterialsScienceandEngineering,SituCouplingStrategyforAnchoringMonodisperseCo9S8Nano-ChongqingUniversity,Chongqing400044,PRChina;particlesonSandNDual-DopedGrapheneasaBifunctionalChongqingKeyLaboratoryofVanadium−TitaniumElectrocatalystforRechargeableZn−AirBattery.Nano-MicroLett.MetallurgyandNewMaterials,ChongqingUniversity,2019,11(1),4.(9)Liu,Z.;Zha,M.;Wang,Q.;Hu,G.;Feng,L.Overallwater-Chongqing400044,PRChinasplittingreactionefficientlycatalyzedbyanovelbi-functionalRu/DongLiu−CollegeofMaterialsScienceandEngineering,Ni3N−Nielectrode.Chem.Commun.2020,56(15),2352−2355.ChongqingUniversity,Chongqing400044,PRChina;(10)Anantharaj,S.;Ede,S.R.R.;Kannimuthu,K.;SamSankar,S.;ChongqingKeyLaboratoryofVanadium−TitaniumSangeetha,K.;Pitchiah,E.K.;Kundu,S.J.E.PrecisionandMetallurgyandNewMaterials,ChongqingUniversity,CorrectnessintheEvaluationofElectrocatalyticWaterSplitting:Chongqing400044,PRChinaRevisitingActivityParameterswithaCriticalAssessment.EnergyKailiangJian−CollegeofMaterialsScienceandEngineering,Environ.Sci.2018,11(4),744−711.ChongqingUniversity,Chongqing400044,PRChina;(11)Anantharaj,S.;Ede,S.R.;Sakthikumar,K.;Karthick,K.;ChongqingKeyLaboratoryofVanadium−TitaniumMishra,S.;Kundu,S.RecentTrendsandPerspectivesinElectro-MetallurgyandNewMaterials,ChongqingUniversity,chemicalWaterSplittingwithanEmphasisonSulfide,Selenide,andChongqing400044,PRChinaPhosphideCatalystsofFe,Co,andNi:AReview.ACSCatal.2016,6(12),8069−8097.Completecontactinformationisavailableat:(12)Shi,X.;Wu,A.;Yan,H.;Zhang,L.;Tian,C.;Wang,L.;Fu,H.https://pubs.acs.org/10.1021/acs.jpclett.0c03804A“MOFsplusMOFs”strategytowardCo−Mo2Ntubesforefficientelectrocatalyticoverallwatersplitting.J.Mater.Chem.A2018,6(41),Notes20100−20109.Theauthorsdeclarenocompetingfinancialinterest.(13)Xiong,J.;Cai,W.;Shi,W.;Zhang,X.;Li,J.;Yang,Z.;Feng,L.;Cheng,H.Salt-templatedsynthesisofdefect-richMoNnanosheetsfor■ACKNOWLEDGMENTSboostedhydrogenevolutionreaction.J.Mater.Chem.A2017,5(46),24193−24198.ThisresearchwassupportedundertheNationalKeyR&D(14)Kuznetsov,D.A.;Chen,Z.;Kumar,P.V.;Tsoukalou,A.;ProgramofChina(2017YFB0603800),theFundamentalKierzkowska,A.;Abdala,P.M.;Safonova,O.V.;Fedorov,A.;Müller,ResearchFundsfortheCentralUniversitiesC.R.SingleSiteCobaltSubstitutionin2DMolybdenumCarbide(2020CDJGFCL004),FokYingTungEducationFoundation(MXene)EnhancesCatalyticActivityintheHydrogenEvolution(171111),theVenture&InnovationSupportProgramforReaction.J.Am.Chem.Soc.2019,141(44),17809−17816.ChongqingOverseasReturnees(cx2019041),Jointfund(15)Ma,Y.;Chen,M.;Geng,H.;Dong,H.;Wu,P.;Li,X.;Guan,betweenShenyangNationalLaboratoryforMaterialsScienceG.;Wang,T.SynergisticallyTuningElectronicStructureofPorousβ-andStateKeyLaboratoryofAdvancedProcessingandMo2CSpheresbyCoDopingandMo-VacanciesDefectEngineering1586https://dx.doi.org/10.1021/acs.jpclett.0c03804J.Phys.Chem.Lett.2021,12,1581−1587

6TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterforOptimizingHydrogenEvolutionReactionActivity.Adv.Funct.ThroughinSituElectrochemicalTuningforOxygenEvolutionMater.2020,30(19),2000561.ReactionsinAlkalineMedia.ACSCatal.2020,10(1),463−493.(16)El-Refaei,S.M.;Russo,P.A.;Amsalem,P.;Koch,N.;Pinna,N.(32)Jin,Y.;Huang,S.;Yue,X.;Du,H.;Shen,P.K.Mo-andFe-TheImportanceofLigandSelectionontheFormationofMetalModifiedNi(OH)2/NiOOHNanosheetsasHighlyActiveandStablePhosphonate-DerivedCoMoPandCoMoP2NanoparticlesforElectrocatalystsforOxygenEvolutionReaction.ACSCatal.2018,8CatalyticHydrogenEvolution.ACSAppl.NanoMater.2020,3(5),(3),2359−2363.4147−4156.(33)Gao,X.;Liu,X.;Zang,W.;Dong,H.;Pang,Y.;Kou,Z.;Wang,(17)Sun,K.;Zhang,T.;Tan,L.;Zhou,D.;Qian,Y.;Gao,X.;Song,P.;Pan,Z.;Wei,S.;Mu,S.;Wang,J.Synergizingin-grownNi3N/NiF.;Bian,H.;Lu,Z.;Dang,J.;Gao,H.;Shaw,J.;Chen,S.;Chen,G.;heterostructuredcoreandultrathinNi3Nsurfaceshellenablesself-Rao,Y.InterfaceCatalystsofNi/Co2NforHydrogenElectro-adaptivesurfacereconfigurationandefficientoxygenevolutionchemistry.ACSAppl.Mater.Interfaces2020,12(26),29357−29364.reaction.NanoEnergy2020,78,105355.(18)Zhu,C.;Wang,A.L.;Xiao,W.;Chao,D.;Zhang,X.;Tiep,N.(34)Wang,X.;Zhang,Y.;Si,H.;Zhang,Q.;Wu,J.;Gao,L.;Wei,H.;Chen,S.;Kang,J.;Wang,X.;Ding,J.;Wang,J.;Zhang,H.;Fan,X.;Sun,Y.;Liao,Q.;Zhang,Z.;Ammarah,K.;Gu,L.;Kang,Z.;H.J.InSituGrownEpitaxialHeterojunctionExhibitsHigh-Zhang,Y.Single-AtomVacancyDefecttoTriggerHigh-EfficiencyPerformanceElectrocatalyticWaterSplitting.Adv.Mater.2018,30HydrogenEvolutionofMoS2.J.Am.Chem.Soc.2020,142(9),(13),1705516.4298−4308.(19)Yan,H.;Xie,Y.;Wu,A.;Cai,Z.;Wang,L.;Tian,C.;Zhang,X.;(35)Durst,J.;Siebel,A.;Simon,C.;Hasche,F.;Herranz,J.;Fu,H.Anion-ModulatedHERandOERActivitiesof3DNi−V-BasedGasteiger,H.A.NewinsightsintotheelectrochemicalhydrogenInterstitialCompoundHeterojunctionsforHigh-EfficiencyandStableoxidationandevolutionreactionmechanism.EnergyEnviron.Sci.OverallWaterSplitting.Adv.Mater.2019,31(23),1901174.2014,7,2255.(20)Hu,S.;Wang,S.;Feng,C.;Wu,H.;Zhang,J.;Mei,H.Novel(36)Mahmood,N.;Yao,Y.;Zhang,J.W.;Pan,L.;Zhang,X.;Zou,J.MOF-DerivedNickelNitrideasHigh-PerformanceBifunctionalJ.ElectrocatalystsforHydrogenEvolutioninAlkalineElectrolytes:ElectrocatalystsforHydrogenEvolutionandUreaOxidation.ACSMechanisms,Challenges,andProspectiveSolutions.Sci.Adv.2018,5SustainableChem.Eng.2020,8(19),7414−7422.(2),1700464.(21)Wang,S.;Yu,Z.;Tu,J.;Wang,J.;Tian,D.;Liu,Y.;Jiao,S.A(37)Dubouis,N.;Grimaud,A.Thehydrogenevolutionreaction:NovelAluminum-IonBattery:Al/AlCl3-[EMIm]Cl/Ni3S2@Gra-frommaterialtointerfacialdescriptors.Chem.Scie.2019,10(40),phene.Adv.EnergyMater.2016,6(13),1600137.9165−9181.(22)Chen,Z.;Song,Y.;Cai,J.;Zheng,X.;Han,D.;Wu,Y.;Zang,(38)Ryu,J.;Surendranath,Y.TrackingElectricalFieldsatthePt/Y.;Niu,S.;Liu,Y.;Zhu,J.;Liu,X.;Wang,G.Tailoringthed-BandH2OInterfaceduringHydrogenCatalysis.J.Am.Chem.Soc.2019,CentersEnablesCo4NNanosheetsToBeHighlyActivefor141(39),15524−15531.HydrogenEvolutionCatalysis.Angew.Chem.,Int.Ed.2018,57(39)Karmakar,A.;Kannimuthu,K.;Sankar,S.S.;Sangeetha,K.;(18),5076−5080.Madhu,R.;Kundu,S.VastExplorationonImprovisingSynthetic(23)Liu,P.;Yan,J.;Mao,J.;Li,J.;Liang,D.;Song,W.In-planeStrategiesinEnhancingOERKineticsofLDHStructures:aReview.J.intergrowthCoS2/MoS(2)nanosheets:binarymetal-organicframe-Mater.Chem.A2021,9,1314−1352.workevolutionandefficientalkalineHERelectrocatalysis.J.Mater.(40)Merki,D.;Fierro,S.;Vrubel,H.;Hu,X.AmorphousChem.A2020,8(22),11435−11441.molybdenumsulfidefilmsascatalystsforelectrochemicalhydrogen(24)Song,F.;Li,W.;Yang,J.;Han,G.;Yan,T.;Liu,X.;Rao,Y.;productioninwater.Chem.Sci.2011,2,1262.Liao,P.;Cao,Z.;Sun,Y.InterfacialSitesbetweenCobaltNitrideand(41)Popczun,E.J.;Mckone,J.R.;Read,C.G.;Biacchi,A.J.;Wiltrout,A.M.;Lewis,N.S.;Schaak,R.E.NanostructurednickelCobaltActasBifunctionalCatalystsforHydrogenElectrochemistry.phosphideasanelectrocatalystforthehydrogenevolutionreaction.J.ACSEnergyLett.2019,4(7),1594−1601.Am.Chem.Soc.2013,135(25),9267−9270.(25)Huang,J.;Sun,Y.;Zhang,Y.;Zou,G.;Yan,C.;Cong,S.;Lei,(42)Wang,S.;Jiao,S.;Wang,J.;Chen,H.S.;Tian,D.;Lei,H.;T.;Dai,X.;Guo,J.;Lu,R.ANewMemberofElectrocatalystsBasedFang,D.N.High-PerformanceAluminum-IonBatterywithCuS@ConNickelMetaphosphateNanocrystalsforEfficientWaterOxidation.MicrosphereCompositeCathode.ACSNano2017,11(1),469−477.Adv.Mater.2018,30(5),1705045.(26)Liu,X.;Guo,Y.;Wang,P.;Wu,Q.;Zhang,Q.;Rozhkova,E.A.;Wang,Z.;Liu,Y.;Zheng,Z.;Dai,Y.;Huang,B.SynthesisofSynergisticNitrogen-DopedNiMoO4/Ni3NHeterostructureforImplementationofanEfficientAlkalineElectrocatalyticHydrogenEvolutionReaction.ACSAppl.EnergyMater.2020,3(3),2440−2449.(27)Gao,M.;Chen,L.;Zhang,Z.;Sun,X.InterfaceengineeringoftheNi(OH)2-Ni3Nnanoarrayheterostructureforthealkalinehydrogenevolutionreaction.J.Mater.Chem.A2018,6(3),833−836.(28)Yan,H.J.;Meng,M.C.;Wang,L.;Wu,A.P.;Tian,C.G.;Zhao,L.;Fu,H.G.Small-sizedtungstennitrideanchoringintoa3DCNT-rGOframeworkasasuperiorbifunctionalcatalystforthemethanoloxidationandoxygenreductionreactions.NanoRes.2016,9(2),329−343.(29)Lin,F.;Dong,Z.;Yao,Y.;Yang,L.;Fang,F.;Jiao,L.ElectrocatalyticHydrogenEvolutionofUltrathinCo-Mo5N6HeterojunctionwithInterfacialElectronRedistribution.Adv.EnergyMater.2020,10(42),2002176.(30)Zhang,B.;Wang,J.;Liu,J.;Zhang,L.;Wan,H.;Miao,L.;Jiang,J.Dual-DescriptorTailoring:TheHydroxylAdsorptionEnergy-DependentHydrogenEvolutionKineticsofHigh-ValanceStateDopedNi3NinAlkalineMedia.ACSCatal.2019,9(10),9332−9338.(31)Sivanantham,A.;Ganesan,P.;Vinu,A.;Shanmugam,S.SurfaceActivationandReconstructionofNon-Oxide-BasedCatalysts1587https://dx.doi.org/10.1021/acs.jpclett.0c03804J.Phys.Chem.Lett.2021,12,1581−1587

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
最近更新
更多
大家都在看
近期热门
关闭