欢迎来到天天文库
浏览记录
ID:9964924
大小:353.00 KB
页数:10页
时间:2018-05-17
《影响世界的十大方程式》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、数学方程式不仅能够帮助人们解决知识上的问题,同时,从某种角度来看,它们本身也是非常美丽的。许多科学家都曾坦承,自己非常喜欢某些方程式,并不仅仅因其功能,更在于它们所表现出的那种简约而不简单、形式如诗句般优雅的美感。以下,便是由LiveScience网站刊登出的世界各国科学家们鼎力推荐的美丽方程:一、广义相对论 该方程式由20世纪最伟大的物理学家爱因斯坦于1915年提出,是开创性理论——广义相对论的组成部分。它颠覆了科学家们此前对于引力的定义,将其描述为时空扭曲的结果。 “直到现在,我依然为单独一个
2、数字方程就可以完整覆盖时空的定义而感到震惊。”美国空间望远镜研究所天体物理学家马里奥·利维奥表达了自己对该方程的推崇,“这个方程式堪为爱因斯坦天才智慧的结晶。” 利维奥解释道:“该方程式的右边部分,代表着我们所在宇宙,包括推动宇宙膨胀的暗物质在内的总能量。左边则表述了时空的几何形式。左右两边合起来描述了爱因斯坦广义相对论的实质,即质量和能量决定了时空的几何形式以及曲率,表现为我们俗称的引力。”“这是个优雅的方程。”纽约大学的物理学者凯尔·克兰默尔对利维奥的意见表示赞同。同时,他还指出该方程式展示了时
3、空、质量与能量之间的关系。“这个方程式告诉人们三者之间的相互关联,比如太阳的存在是如何扭曲了时空,导致地球围绕它进行轨道运动。它还解释了宇宙自大爆炸之后的进化情况,以及预言了黑洞的存在。”10二、标准模型 这是另外一条被物理学界奉为经典条文的方程式。标准方程描述了那些被认为组成了当前宇宙的基本粒子。它还能够被压缩为以18世纪法国著名数学和天文学家约瑟夫·路易斯·拉格朗日命名的简化形式。 美国加州斯坦福直线加速器中心理论物理学家兰斯·迪克森推荐了该方程式。在他看来,它成功地描述了除重力之外,人们迄今
4、为止在试验室中所发现的基本粒子与力,其中就包括新近被发现的被称为“上帝粒子”的希格斯玻色子,即该方程式中的希腊字母“φ”。 不过,尽管标准方程与量子力学、狭义相对论可以彼此兼容,但是却难与广义相对论建立统一关系,因此它在描述重力上无能为力。10三、微积分基本定理 如果说,广义相对论与标准方程描述的是宇宙的某些特殊方面,那么其他一些方式则适用于所有情况,比如微积分基本定理方程。 该方程式堪为微积分学的肱骨理论,并且把积分与导数这两个微积分学中最为重要的概念联系在一起。“简单地说,它表述了某平滑连续
5、变量的净变值,比如其在特定时间内走过的距离,等于这个量变化率的积分,即速度的积分。”美国福特汉姆大学数学系主任马尔卡纳·布拉卡洛娃-特里维西克说。“微积分基本定理让我们能够在整个间隔变化率的基础上,测算某一间隔的净变值。” 说到微积分,实际上早在古代该学科的萌芽就已经开始萌发,直到17世纪时最终由伊克萨·牛顿整理成科,并开始将其应用于描述行星围绕太阳的运动规律。10四、勾股定理(也称:毕达哥拉斯定理) 该定理可谓老而弥香的骨灰级理论,几乎是每个学生开始学习生涯后,学到的第一批几何知识之一。 这条
6、定理的具体内容是:任何直角三角形的两个直角边长度的平方相加,其和等于剩下那条斜边长度的平方。 “毕达哥拉斯定理,是第一个让我感到震惊的数学定理。”推荐这条方程式的美国康奈尔大学数学家戴安娜·塔米娜说。而她给出的理由是:“这条几何学中的定理,也同样能够用数字进行表达。这对于当时还是个孩子的我来说,是多么的奇妙有趣。”10五、欧拉方程 这个看起来非常简单的方程式,实质上描述了球体的本质。用马萨诸塞州威廉姆斯学院的数学家科林·亚当斯的话说:“如果你能够将一个球体分割成为面(F)、边(F)和点(V),那么
7、这些面,边和顶点之间的关系,必定符合V-E+F=2。” 在亚当斯看来,该方程式最大的魅力在于,它以一个包含面、棱和顶点数目的方程,体现了不同形状物体的本质属性。不管代入的是什么样的物体,该程式的结论都是成立的。比如,除了球体,如果人们考察5面金字塔形,即4个三角形与1个正方形的组合,就会发现等号的右边,一样会是数字2。10六、狭义相对论 爱因斯坦再次因为自己的相对论入选本次评选,只不过这次是狭义而不是广义相对论。 狭义相对论并没有把时间和空间看做绝对、静止的概念,它们呈现的状态与观察者的速度有关
8、。这个方程式描述了随着观察者向某一方向移动的速度加快,时间是如何膨胀,或者说开始变慢。 “该方程式最伟大的一点,恰恰在于它是那么的平易近人。”欧核中心粒子物理学家比尔·莫瑞说。“整个方程中并没有代数等复杂的运算,一个普通中学生都能够完成计算。当然,它不可能仅仅只是这么简单。实际上,这个方程式提供了一种全新的看待宇宙的角度和方式,一种看待人们与现实世界之间关系的态度。而最精妙的是,要反映这么深厚的内涵,该方程式却只借助了最为简单的数学方式,任何想要解读它
此文档下载收益归作者所有