欢迎来到天天文库
浏览记录
ID:9942747
大小:158.50 KB
页数:7页
时间:2018-05-16
《第三章 变频原理实验》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、第三章变频原理实验本章节主要完成的实验为三相SPWM、SVPWM、及马鞍波变频原理实验及在各种变频模式下V/F曲线的测定等。异步电机转速基本公式为:n=其中n为电机转速,f为电源频率,p为电机极对数,s为电机的转差率。当转差率固定在最佳值时,改变f即可改变转速n。为使电机在不同转速下运行在额定磁通,改变频率的同时必须成比例地改变输出电压的基波幅值。这就是所谓的VVVF(变压变频)控制。工频50Hz的交流电源经整流后可以得到一个直流电压源。对直流电压进行PWM逆变控制,使变频器输出PWM波形中的基波为预先设定的电压/频率比曲线所规定的电压频率数值。因此,这个PWM的调制方法是其中的关键技术。目前
2、常用的变频器调制方法有SPWM,马鞍波PWM,和空间电压矢量PWM等方式。一、SPWM变频调速方式:正弦波脉宽调制法(SPWM)是最常用的一种调制方法,SPWM信号是通过用三角载波信号和正弦信号相比较的方法产生,当改变正弦参考信号的幅值时,脉宽随之改变,从而改变了主回路输出电压的大小。当改变正弦参考信号的频率时,输出电压的频率即随之改变。在变频器中,输出电压的调整和输出频率的改变是同步协调完成的,这称为VVVF(变压变频)控制。SPWM调制方式的特点是半个周期内脉冲中心线等距、脉冲等幅,调节脉冲的宽度,使各脉冲面积之和与正弦波下的面积成正比例,因此,其调制波形接近于正弦波。在实际运用中对于三相
3、逆变器,是由一个三相正弦波发生器产生三相参考信号,与一个公用的三角载波信号相比较,而产生三相调制波。如图6-1所示。二、马鞍波PWM变频调速方式前面已经说过,SPWM信号是由正弦波与三角载波信号相比较而产生的,正弦波幅值与三角波幅值之比为m,称为调制比。正弦波脉宽调制的主要优点是:逆变器输出线电压与调制比m成线性关系,有利于精确控制,谐波含量小。但是在一般情况下,要求调制比m<1。当m>1时,正弦波脉宽调制波中出现饱和现象,不但输出电压与频率失去所要求的配合关系,而且输出电压中谐波分量增大,特别是较低次谐波分量较大,对电机运行不利。另外可以证明,如果m<1,逆变器输出的线电压中基波分量的幅值,
4、只有逆变输入的电网电压幅值的0.866倍,这就使得采用SPWM逆变器不能充分利用直流母线电压。图3-1正弦波脉宽调制法为解决这个问题,可以在正弦参考信号上叠加适当的三次谐波分量,如图6-2所示。图中:u=ur1 +ur3 =sinωt+1/6sin3ωt图3-2马鞍波的形成合成后的波形似马鞍形,所以称为马鞍波PWM。采用马鞍波调制,使参考信号的最大值减小,但参考波形的基波分量的幅值可以进一步提高。即可使m>1,从而可以在高次谐波信号分量不增加的条件下,增加其基波分量的值,克服SPWM的不足。目前这种变频方式在家用电器上应用广泛,如变频空调等。三、空间电压矢量PWM变频调速方式对三相逆变器,根
5、据三路开关的状态可以生成六个互差60°的非零电压矢量V1—V6,以及零矢量V0,V7,矢量分布如图6-3所示。当开关状态为(000)或(111)时,即生成零矢量,这时逆变器上半桥或下半桥功率器件全部导通,因此输出线电压为零。图3-3空间电压矢量的分布由于电机磁链矢量是空间电压矢量的时间积分,因此控制电压矢量就可以控制磁链的轨迹和速率。在电压矢量的作用下,磁链轨迹越是接近圆,电机脉动转矩越小,运行性能越好。为了比较方便地演示空间电压矢量PWM控制方式的本质,我们采用了最简单的六边形磁链轨迹。尽管如此,其效果仍优于SPWM方法。实验一三相正弦波脉宽度调制(SPWM)变频原理实验一、实验目的(1)掌
6、握SPWM的基本原理和实现方法。(2)熟悉与SPWM控制有关的信号波形。二、实验所需挂件及附件序号型号备注1TKDD-1型电源控制屏该控制屏包含“三相电源输出”,“励磁电源”等几个模块。2DK28三相异步电动机变频调速控制3双踪示波器三、实验方法(1)接通挂件电源,关闭电机开关,调制方式设定在SPWM方式下(将控制部分S、V、P的三个端子都悬空),然后开启电源开关。(2)点动“增速”按键,将频率设定在0.5Hz,在SPWM部分观测三相正弦波信号(在测试点“2、3、4”),观测三角载波信号(在测试点“5”),三相SPWM调制信号(在测试点“6、7、8”);再点动“转向”按键,改变转动方向,观测上
7、述各信号的相位关系变化。(3)逐步升高频率,直至到达50Hz处,重复以上的步骤。(4)将频率设置为0.5HZ~60HZ的范围内改变,在测试点“2、3、4”中观测正弦波信号的频率和幅值的关系。四、实验报告(1)画出与SPWM调制有关信号波形,说明SPWM的基本原理。(2)分析在0.5HZ~50Hz范围内正弦波信号的幅值与频率的关系。(3)分析在50HZ~60Hz范围内正弦波信号的幅值与频率的关系。实
此文档下载收益归作者所有