轴对称图形典型例题

轴对称图形典型例题

ID:9763272

大小:322.78 KB

页数:9页

时间:2018-05-08

轴对称图形典型例题_第1页
轴对称图形典型例题_第2页
轴对称图形典型例题_第3页
轴对称图形典型例题_第4页
轴对称图形典型例题_第5页
资源描述:

《轴对称图形典型例题》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、——您身边的课外辅导专家轴对称图形典型例题姓名:日期:例1、如下图,已知,PB⊥AB,PC⊥AC,且PB=PC,D是AP上一点.求证:∠BDP=∠CDP.证明:∵ PB⊥AB,PC⊥AC,且PB=PC,∴ ∠PAB=∠PAC(到角两边距离相等的点在这个角平分线上),∵ ∠APB+∠PAB=90°,∠APC+∠PAC=90°,∴ ∠APB=∠APC,在△PDB和△PDC中,∴ △PDB≌△PDC(SAS),∴ ∠BDP=∠CDP.(图形具有明显的轴对称性,可以通过利用轴对称的性质而不用三角形的全等)注:利用角

2、平分线定理的逆定理,可以通过距离相等直接得到角相等,而不用再证明两个三角形全等.例2、已知如下图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC.求证:∠A+∠C=180°.证法一:过D作DE⊥AB交BA的延长线于E,DF⊥BC于F,∵ BD平分∠ABC,∴ DE=DF,在Rt△EAD和Rt△FCD中,(角平分线是常见的对称轴,因此可以用轴对称的性质或全等三角形的性质来证明.)∴ Rt△EAD≌Rt△FCD(HL),∴ ∠C=∠EAD,∵ ∠EAD+∠BAD=180°,∴ ∠A+∠C=180°

3、.证法二:如下图(1),在BC上截取BE=AB,连结DE,证明△ABD≌△EBD可得.(1)(3)证法三:如下图(3),延长BA到E,使BE=BC,连结ED,以下同证法二.注:9——您身边的课外辅导专家本题考察一个角平分线上的任意一点到角的两边距离相等的定理来证明线段相等,关键是掌握遇到角的平分线的辅助线的不同的添加方法.例3、已知,如下图,AD为△ABC的中线,且DE平分∠BDA交AB于E,DF平分∠ADC交AC于F.求证:BE+CF>EF.证法一:在DA截取DN=DB,连结NE、NF,则DN=DC,在△

4、BDE和△NDE中,(遇到角平分线可以考虑利用轴对称的性质或全等三角形的性质来解题)∴ △BDE≌△NDE(SAS),∴ BE=NE(全等三角形对应边相等),同理可证:CF=NF,在△EFN中,EN+FN>EF(三角形两边之和大于第三边),∴ BE+CF>EF.证法二:延长ED至M,使DM=ED,连结CM、MF,在△BDE和△CDM中,(从另一个角度作辅助线)∴ △BDE≌△NDE(SAS),∴ CM=BE(全等三角形对应边相等),又∵ ∠BDE=∠ADE,∠ADF=∠CDF,而∠BDE+∠ADE+∠ADF

5、+∠CDF=180°,∴ ∠ADE+∠ADF=90°,即∠EDF=90°,∴ ∠FDM=∠EDF=90°,在△EDF和△MDF中,∴ △EDF≌△MDF(SAS),∴ EF=MF(全等三角形对应边相等),在△CMF中,CF+CM>EF,∴ BE+CF>EF.注:本题综合考察角平分线、中线的意义,关键是如何使题中的分散的条件集中.例4、已知,如下图,P、Q是△ABC边BC上的两点,且BP=PQ=QC=AP=AQ.求:∠BAC的度数.解:∵ AP=PQ=AQ(已知),∴ ∠APQ=∠AQP=∠PAQ=60°(等

6、边三角形三个角都是60°),9——您身边的课外辅导专家∵ AP=BP(已知),(注意观察图形和条件)∴ ∠PBA=∠PAB(等边对等角),∴ ∠APQ=∠PBA+∠PAB=60°(三角形的一个外角等于和它不相邻的两个内角和),∴ ∠PBA=∠PAB=30°,同理∠QAC=30°,∴ ∠BAC=∠BAP+∠PAQ+∠QAC=30°+60°+30°=120°.注:本题考察等腰三角形、等边三角形的性质,关键是掌握求角的步骤:(1)利用等边对等角得到相等的角;(2)利用三角形的一个外角等于和它不相邻的两个内角和得各

7、角之间的关系;(3)利用三角形内角和定理列方程.例5、已知,如下图,在△ABC中,AB=AC,E是AB的中点,以点E为圆心,EB为半径画弧,交BC于点D,连结ED,并延长ED到点F,使DF=DE,连结FC.求证:∠F=∠A.证明:∵ AB=AC,∴ ∠B=∠ACB(等边对等角),∵ EB=ED,∴ ∠B=∠EDB,∴ ∠ACB=∠EDB(等量代换),∴ ED∥AC(同位角相等,两直线平行),在△BDE和△AED中,BE=AE=ED,连结AD可得,∠EAD=∠EDA,∠EBD=∠EDB,∠EDA+∠EDB=9

8、0°,即AD⊥BC,∴ ∠EDA+∠EDB=90°,即AD⊥BC,(用什么定理判定三角形全等的?)∴ D为BC的中点,∴ △BDE≌△CDF,∴ ∠BED=∠F,而∠BED=∠A,∴ ∠F=∠A.例6、已知,如下图,△ABC中,AB=AC,E在CA的延长线上,∠AEF=∠AFE.求证:EF⊥BC.证法一:作BC边上的高AD,D为垂足,∵ AB=AC,AD⊥BC,∴ ∠BAD=∠CAD(等腰三角形三线合一),又∵ 

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。