欢迎来到天天文库
浏览记录
ID:9697138
大小:52.50 KB
页数:4页
时间:2018-05-05
《动态数据仓库设计与应用浅谈--》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、动态数据仓库设计与应用浅谈>> 数据仓库技术的每次演进都以发掘企业数据中更多价值作为目标。而近期流行的动态数据仓库技术,不仅在灵活性、可视化方面有了长足进步,还能够对企业决策、合作伙伴及客户服务提供更为强大的支持。 数据仓库发展历程 数据仓库的发展历史具体可以划分为五个阶段。数据仓库系统发展之初,其主要作用是为企业内部的某些部门提供一些固定的报表。因此这一阶段通产被成为报表阶段。在该阶段,数据仓库的结构可以根据具体问题进行优化,即使数据查询人员要求访问的信息量极其巨大,处理这些资料的效率仍然可以很高。 当企业用户的关注点从发生了什么转向
2、为什么会发生,数据仓库进入了分析阶段。在这一阶段,决策者开始对数据进行分析,实质上是在了解报表数据的真实涵义。这就需要更详细地对数据进行多角度分析。为了解决数据查询的瓶颈,出现了联机分析处理(OLAP)环境。它可以使对数据进行多角度分析的反应时间以秒或分钟来计算。因为在OLAP环境中,很多聚合数据都是预先计算好的,而且数据的存储格式也和传统的关系型数据库环境存在本质区别。 拥有了量化的数据支持后,企业对经营的动态情况以及这种情况为什么发生都会有所体验,接下来就要将业务信息用于预测了。数据仓库也随之进入预测阶段,即数据挖掘阶段。数据挖掘能够预知
3、企业即将发生的动向,帮助管理者更为积极地管理和实施企业战略。数据挖掘为用户提供丰富的数据采集工具,以便利用历史数据创建预测模型。 数据仓库演进的第4阶段即是动态数据仓库。第1到第3阶段的数据仓库技术都以支持企业内部战略性决策为重点。而第4阶段则侧重在战术性的决策支持,为执行企业战略的员工提供支持。我们将这一阶段称为营运导向阶段。 动态数据仓库技术在企业环境成熟应用后,将引领企业动态性阶段。伴随着动态数据仓库在决策支持领域所扮演的角色越来越重要,企业实现决策自动化的积极性也在不断提高。在人工操作效果不明显时,为了寻求决策的有效性和连续性,企业
4、会趋向于采取自动决策方式。 数据仓库动起来 动态数据仓库是一种创新理念,但其技术基础和架构思想还是来自传统数据仓库技术。关键的区别是动态数据仓库增加了动态特性,与传统数据仓库相比,它具有如下特点: 1.动态访问 动态访问是指一线用户可以动态、或实时地访问所需要的信息。传统的数据仓库用户只针对高端管理层,而如果要实现大量客户经理和客户代表同时访问,是一个很大的压力。动态数据仓库采用不同于传统数据仓库的技术手段,扩展了数据仓库系统的用户范围,实现动态访问。可以说,动态数据仓库让一线员工真正动了起来。 2.动态数据加载 传统数据仓库保存的
5、是历史的、相对静止的、集成的企业数据。其往往是先加载好数据,再去支撑业务查询。而动态数据仓库的数据加载却可以在加载数据的同时,满足用户的查询请求,而且动态加载的负荷不影响用户使用数据仓库。不仅如此,动态数据仓库的数据也是准实时加载的,这样就可以使用户能够访问几乎和生产环境时效相当的数据。 3.动态事件 传统数据仓库只是支持用户对企业历史数据的分析,或者经过一些模型对未来的一些发展进行预测。它无法支持一线员工在遇到一些动态事件(例如银行柜台向客户推荐理财产品)时,进行一些实时的业务操作。而动态数据仓库就可以支持一线员工在遇到这些动态事件时,及
6、时做出响应,成功抓住业务机会,从而大幅提升业绩。因为,从事情发生到采取行动的时间越短,成功销售的命中率就越高,所获的价值也就越高。 4.动态负载管理 传统数据仓库在负载管理方面,没有什么特殊要求。而动态数据仓库则包含策略动态负载管理和操作动态负载管理。其中,操作动态负载管理一般是比较简单的访问,不需要看太多的信息;而策略动态负载管理则需要实施复杂的数据挖掘。 5.动态企业集成 传统数据仓库主要用来支持企业用户对数据进行分析。而动态数据仓库则可以将企业所有系统都很好地整合在一起,形成一个闭环,从而实现流程的自动化,而不是一个独立的系统。
7、 6.动态可用性 因为动态数据库已经不是一个纯粹的后台系统,而是业务运营的一部分,因此对可靠性、稳定性的要求更为严格。 动态数据仓库设计 前面提到,动态数据仓库在技术设施上采用得都是已有技术,而实现的难点在于动态,即如何实现数据仓库的动态特性,这也是部署动态数据仓库系统的关键所在。动态数据仓库中包含了传统数据仓库的各种元素,例如元数据管理、数据分发、对外服务、调度管理、代码自动化、数据质量管理等。 要实现动态数据仓库中的动态数据加载,有多个实施方案供用户选择。目前,市场中存在多个接近实时的数据同步解决方案。例如,在专有工具方面,可以借助
8、IBMaticaPoDataStage加CDC组件;数据库工具包括,甲骨文数据库的复制技术、DB2基于CD/CCD的SQL复制,以及SQLServer
此文档下载收益归作者所有