文献综述:个性化推荐算法的研究综述

文献综述:个性化推荐算法的研究综述

ID:9671283

大小:101.50 KB

页数:6页

时间:2018-05-05

文献综述:个性化推荐算法的研究综述_第1页
文献综述:个性化推荐算法的研究综述_第2页
文献综述:个性化推荐算法的研究综述_第3页
文献综述:个性化推荐算法的研究综述_第4页
文献综述:个性化推荐算法的研究综述_第5页
资源描述:

《文献综述:个性化推荐算法的研究综述》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、毕业设计(论文)文献综述毕业设计(论文)题目基于ASP的个人图书管理系统文献综述题目个性化推荐算法的研究综述学院计算机学院专业软件工程姓名班级学号指导教师个性化推荐算法的研究综述一、前言随着互联网的出现和普及,Web已经成为现代人类获取信息的一个重要途径。我们也逐渐从信息匮乏的时代进入到信息超载的时代,由于Web信息的日益增长,人们不得不花费大量的时间去寻找自己想要的信息。尤其是网络小说的兴起,使得无数的写手投入到写小说的队伍中。导致网络上的小说的质量参差不齐。人们很难在其中找到自己合意的小说。仅

2、通过现有的Google、百度等搜索引擎来搜索有用信息就好像是大海捞针。而各个小说网站也不够齐全,各有各的偏重点,很难从一个中找出所有满意的。这就需要有一个具有良好用户体验的系统,会将海量信息进行筛选、过滤,将用户最关注最感兴趣的信息展现在用户面前[1]。在此背景下,推荐系统出现了,推荐系统的任务就是解决上述的问题,联系用户和信息,一方面帮助用户发现对自己有价值的信息,另一方面让信息能够展现在对他感兴趣的人群中,从而实现信息提供商与用户的双赢。一个成功个性化推荐系统,往往选择了合适的推荐算法作为系统

3、核心。推荐算法在很大程度上决定了推荐系统类型和性能的优劣。除此之外,能否处理好新用户的冷启动问题和数据过多导致的稀疏问题,也是推荐系统面临的一大挑战。因此,开发人员在选择一种推荐算法之前,必须综合考虑实际应用场景、各推荐算法的特征与性能等要素。下文选择了几种推荐算法,就他们的特点以及优缺点进行分析综述。二、主题(1)推荐算法特点1)基于内容的推荐基于内容的信息推荐方法的理论依据主要来自于信息检索和信息过滤,所谓的基于内容的推荐方法就是根据用户过去的浏览记录来向用户推荐用户没有接触过的推荐项。它的核

4、心思想[2]是根据推荐物品或内容的元数据,发现物品或者内容的相关性,然后基于用户以往的喜好记录,推荐给用户相似的物品。系统首先对物品(图1中举电影的例子)的属性进行建模[3],图中用类型作为属性。在实际应用中,只根据类型显然过于粗糙,还需要考虑演员,导演等更多信息。通过相似度计算,发现电影A和C相似度较高,因为他们都属于爱情类。系统还会发现用户A喜欢电影A,由此得出结论,用户A很可能对电影C也感兴趣。于是将电影C推荐给A。这种推荐系统[4]多用于一些资讯类的应用上,针对文章本身抽取一些tag作为该

5、文章的关键词,继而可以通过这些tag来评价两篇文章的相似度。图1基于内容的推荐举例2)基于协同过滤的推荐协同过滤是一种在推荐系统中广泛采用的推荐方法。这种算法[5]基于一个“物以类聚,人以群分”的假设,喜欢相同物品的用户更有可能具有相同的兴趣。基于协同过滤的推荐系统[6]一般应用于有用户评分的系统之中,通过分数去刻画用户对于物品的喜好。协同过滤被视为利用集体智慧的典范,不需要对项目进行特殊处理,而是通过用户建立物品与物品之间的联系。这种算法主要分为3个步骤[7]:一,用户评分。可以分为显性评分和隐

6、形评分两种。显性评分就是直接给项目评分(例如给百度里的用户评分),隐形评分就是通过评价或是购买的行为给项目评分(例如在有啊购买了什么东西)。二,寻找最近邻居。这一步就是寻找与你距离最近的用户,测算距离一般采用以下三种算法: 1.皮尔森相关系数。 2.余弦相似性。 3调整余弦相似性。 调整余弦相似性似乎效果会好一些。三,推荐。产生了最近邻居集合后,就根据这个集合对未知项进行评分预测。把评分最高的N个项推荐给用户。这种算法存在性能上的瓶颈,当用户数越来越多的时候,寻找最近邻居的复杂度也会大幅度的增长。

7、图2协同过滤推荐流程3)基于关联规则推荐基于关联规则[8]的推荐是以关联规则为基础,把已购商品作为规则头,规则体为推荐对象。关联规则挖掘可以发现不同商品在销售过程中的相关性,在零售业中已经得到了成功的应用。关联规则就是在一个交易数据库中统计购买了商品集X的交易中有多大比例的交易同时购买了商品集Y,其直观的意义就是用户在购买某些商品的时候有多大倾向去购买另外一些商品。比如购买牛奶的同时很多人会同时购买面包。4)其他推荐基于效用[9]的推荐是建立在对用户使用项目的效用情况上计算的,其核心问题是怎么样为

8、每一个用户去创建一个效用函数,因此,用户资料模型很大程度上是由系统所采用的效用函数决定的。基于知识[10]的推荐,在某种程度是可以看成是一种推理(Inference)技术,它不是建立在用户需要和偏好基础上推荐的。基于知识的方法因它们所用的功能知识不同而有明显区别。(2)推荐算法优缺点比较[11]表1推荐算法优缺点比较推荐方法优点缺点基于内容推荐推荐结果直观,容易解释;不需要领域知识新用户问题;复杂属性不好处理;要有足够数据构造分类器协同过滤推荐新异兴趣发现、不需要领域知识;随着时间

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。