数字图像处理课程设计--人脸检测

数字图像处理课程设计--人脸检测

ID:9655576

大小:381.21 KB

页数:10页

时间:2018-05-04

数字图像处理课程设计--人脸检测_第1页
数字图像处理课程设计--人脸检测_第2页
数字图像处理课程设计--人脸检测_第3页
数字图像处理课程设计--人脸检测_第4页
数字图像处理课程设计--人脸检测_第5页
资源描述:

《数字图像处理课程设计--人脸检测》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、数字图像处理课程设计数字图像处理课程设计报告(人脸检测)姓名:xxx学号:xxxx10数字图像处理课程设计1引言随着科学技术的飞速发展,互联网的广泛应用,重要部门(机场、银行、军政机关、重点控制地区)的进出,计算机网络中重要信息的存储与提取,都需要可靠的人身鉴别。身份的识别已经成为一种人们日常生活中经常遇到的问题。人脸识别作为生物特征识别中成功的应用之一,因为其巨大的商业应用前景,受到越来越多的重视。人们更多的是在电影中看到这种技术的神奇应用:警察将偷拍到的嫌疑犯的脸部照片,输入到电脑中,与警方数据库中的资料进行比对,并找出该嫌犯的详细资料和犯罪记录。这并

2、非虚构的情节,在国外,人脸识别技术早已被大量使用在国家重要部门以及军警等安防部门。在国内,对于人脸识别技术的研究始于上世纪90年代,目前主要应用在公安、金融、网络安全、物业管理以及考勤等领域。近30年以来,人脸识别技术有了长足的发展,并且逐步走向实际应用阶段[1]。2实验方法2.1方法综述典型人脸识别系统的实现过程如图2.1所示,一般包括三个步骤:人脸检测、人脸特征提取、人脸识别与验证。在实现过程中,首先输入图像集,然后用人脸检测模块进行人脸检测。如果检测到人脸图像,则进行特征点定位,一般以两眼中心为基准,根据两眼距离d,对人脸图像进行归一化处理,归一化处

3、理包含了图像预处理,图像缩放以及有效人脸区域选取等操作。最后对归一化的人脸图像进行特征提取,送入分类器进行识别,最终获得识别结果[2]。图2.1人脸识别技术处理流程图在预处理阶段,对图像进行优化,尽可能去除或者减小光照、成像系统、外部环境等对待处理图像的干扰,为后续处理提高质量。以便使不同的人脸图像尽可能在同一条件下完成特征提取、训练和识别。人脸图像的预处理主要包括人脸扶正,人脸图像的增强,以及归一化等工作。人脸扶正是为了得到人脸位置端正的人脸图像;图像增强是为了改善人脸图像的质量,不仅在视觉上更加清晰图像,而且使图像更利于计算机的处理与识别。归一化工作的

4、目标是取得尺寸一致,灰度取值范围相同的标准化人脸图像。10数字图像处理课程设计2.2具体方法2.2.1图像预处理图像预处理就是对获取得来的图像进行适当的处理,使它具有的特征能够在图像中明显的表现出来。在本次实验中,从五个方面对图像进行了预处理,分别概述如下。(1)二值化二值化的目的是将采集获得的多层次灰度图像处理成二值图像,以便于分析理解和识别并减少计算量。二值化就是通过一些算法,通过一个阈值改变图像中的像素颜色,令整幅图像画面内仅有黑白二值,该图像一般由黑色区域和白色区域组成,可以用一个比特表示一个像素,“1”表示黑色,“0”表示白色,当然也可以倒过来表

5、示,这种图像称之为二值图像。这便有利于我们对特征的提取。该设计中采用组内方差和组外方差来实现二值化。(2)直方图均衡直方图均衡是将一已知灰度概率密度分布的图像,经过某种变换,变成一幅具有均匀灰度概率分布的新图像,其结果是扩展了像元取值的动态范围,从而达到了增强图像整体对比度的效果。直方图是一种点操作,它逐点改变图像的灰度值,尽量使各个灰度级别都具有相同的数量的像素点,使直方图趋于平衡。直方图均衡可以使输入图像转换为在每一个灰度级上都有相同像素点数的输出图像(即输出的直方图是平的)。这对于图像比较或分割是十分有用的。均衡化处理的步骤如下:(a)对给定的待处理

6、图像统计其直方图,求出(b)根据统计出的直方图采用累积分布函数做变换,求变换后的新灰度;(c)用新灰度代替就灰度,求出,这一步是近似过程,应根据处理的目的尽量做到合理,同时把灰度值相等或近似的合并到一起。(3)中值滤波中值滤波是一种非线性处理技术,能抑制图像中的噪声。它是基于图像的这样一种特性:噪声往往以孤立的点的形式出现,这些点对应的像素数很少,而图像则是由像素较多、面积较大的小块构成。在一维的情况下,中值滤波器是一个含有奇数个像素的窗口。在处理之后,位于窗口正中的像素的灰度值,用窗口内各像素灰度值的中值代替。例如若窗口长度为5,窗口中像素的灰度值为80

7、、90、200、110、120,则中值为110,因10数字图像处理课程设计为按小到大(或大到小)排序后,第三位的值是110。于是原来窗口正中的灰度值200就由110取代。如果200是一个噪声的尖峰,则将被滤除。然而,如果它是一个信号,则滤波后就被消除,降低了分辨率。因此中值滤波在某些情况下抑制噪声,而在另一些情况下却会抑制信号。无论是直接获取的灰度图像,还是由彩色图像转换得到的灰度图像,里面都有噪声的存在,噪声对图像质量有很大的影响。进行中值滤波不仅可以去除孤点噪声,而且可以保持图像的边缘特性,不会使图像产生显著的模糊,比较适合于实验中的人脸图像。中值滤波

8、是一种非线性的信号处理方法,因此中值滤波器也就是一种非线性的滤波器

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。