浅析电子商务推荐系统

浅析电子商务推荐系统

ID:9588625

大小:51.00 KB

页数:3页

时间:2018-05-03

浅析电子商务推荐系统_第1页
浅析电子商务推荐系统_第2页
浅析电子商务推荐系统_第3页
资源描述:

《浅析电子商务推荐系统》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、浅析电子商务推荐系统  [摘要]随着互联网的普及和电子商务的发展,商品推荐系统逐渐成为电子商务IT技术的一个重要研究内容,越来越多地受到研究者的关注。本文探讨了电子商务系统的构成、研究内容、研究现状,分析了目前有的推荐系统存在的缺陷和问题,提出了未来电子商务推荐系统研究的发展方向。  [关键词]电子商务;推荐系统;协作过滤;个性化推荐     随着互联网的普及和电子商务的发展,商品推荐系统逐渐成为电子商务IT技术的一个重要研究内容,越来越多地得到研究者的关注。目前,几乎所有大型的电子商务系统,如Amazon、CDNOarketingSyste

2、ms)、供应链决策支持系统(Supply-ChainDecision-SupportSystems)既相似又有不同。销售系统是帮助销售人员如何把产品销售出去;推荐系统最终目的帮助用户,辅助用户购买什么产品做出决策。供应链决策支持系统是帮助生产者决定什么时候生产多少什么产品,以及仓库应该存贮多少各类产品,其最终目的是为企业生产者服务的,而同样推荐系统是面向用户的系统。    三、电子商务个性化推荐系统的研究内容    电子商务个性化推荐的研究有四方面的问题:首先,要解决推荐系统的信息来源问题——推荐系统的基础是用户兴趣资料信息,如何在电子商务环

3、境下尽可能获得更多用户的相关信息,并以合适的形式表示是进行个性化推荐的前提;其次,要实现被顾客接受和认可的个性化推荐,设计准确、高效率的个性化推荐算法是核心;另外,要让推荐系统为广大用户所接受,必须对推荐系统作出客观、综合的评价,尤其要注意从准确率、个性化、安全性、用户满意度等多方面进行评价;推荐系统的应用是最终研究的落脚点,推荐系统不仅能为用户提供完全个性化购物环境,更应为企业的销售决策和客户关系管理提供支持。  在电子商务环境下,用户信息收集表示是电子商务个性化推荐的基础。根据当前对电子商务环境下用户信息收集表示的研究来看,主要着眼于研究

4、如何有效地收集能反映用户兴趣偏好的信息,以及如何通过网络数据挖掘等的方法更自动化地收集用户的隐式信息,解决用户信息收集过多的依赖于显式评价数据的问题。  个性化推荐技术是电子商务自动化推荐系统的核心问题。目前的推荐技术有协同过滤推荐(包括基于用户的和基于项目的)、基于用户人口统计信息的推荐、基于内容的推荐、基于效用的推荐、基于知识的推荐、基于规则的推荐等等。协同过滤推荐是个性化推荐中研究和应用最多的方法,广泛应用于电子商务网站、数字图书馆、网页搜索、新闻过滤等,著名的推荐系统有Tapestry、GroupLens/NetPerceptions

5、、Ringo/Firefly等,其前提假设是存在具有相似兴趣爱好的用户群,每个用户都有与其兴趣爱好相似的邻居用户。预测用户对某一项目的偏好是根据邻居用户对该项目的偏好程度计算的,也就是说如果其邻居用户喜爱某项目,则该用户也很可能会喜爱该项目。协同过滤最大优点是不需要分析对象的特征属性,所以对推荐对象没有特殊的要求,能处理非结构化的复杂对象,如音乐、电影等。  对推荐系统总体性能的评价是推荐系统研究的重要组成部分。目前大都只是采用准确率、召回率等评判尺度对推荐算法进行评价,并没有真正意义上的、提升到对整个推荐系统进行的评价,尤其缺乏从个性化程度

6、、持久性程度、系统的安全性以及用户接受程度等多方面对推荐系统进行综合的评价。    四、研究现状    推荐行为产品或其它项目的软件代理已经在许多应用中使用在电子商务领域,为了增加购买经验并满足客户需求,已经推出了充分利用消费者的访问和购买行为的推荐系统。推荐者通常通过给用户展示他们可能感兴趣的产品或服务来促进购买。例如,诸如Amazon.就是通过利用偏好或其他用户购买信息来介绍书籍或者其它产品给用户的推荐系统。然而,使用的技术相当简单,而且并非很精确和有效。基本上,程序将当前客户购买的一系列产品与其他客户购买的一系列产品作比较,选择客户购买

7、较多的产品与当前客户购买的产品集合的交集,最后从中选出一些尚未被客户所购买而仍然在顾客购物篮中的产品,并将它们作为推荐列表呈现给客户。该技术也用于类似于协作过滤的文本文档的信息抽取。电影或音乐唱片的推荐,例如Moviefrnder.,通过预知一个人的偏好与其他人偏好的线性权重集合,并运用协作过滤技术来实现。  对于推荐系统的研究可分为三个种类:技术系统开发研究,用户行为研究和隐私问题研究。其中技术系统开发是重点。目前各种推荐技术,例如数据挖掘,代理和推理,都已经应用到了推荐系统中。现存的推荐系统从广义上可以划分为基于规则的系统和信息过滤系统。

8、信息过滤系统又可分为基于内容过滤的系统和协作过滤系统两种。  基于规则的系统,N1如:IBM的ate,obasherB,SrivastavaJ.Dataprepar

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。