欢迎来到天天文库
浏览记录
ID:9536539
大小:221.27 KB
页数:8页
时间:2018-05-03
《高考数学难点突破难点19 解不等式》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、难点19解不等式不等式在生产实践和相关学科的学习中应用广泛,又是学习高等数学的重要工具,所以不等式是高考数学命题的重点,解不等式的应用非常广泛,如求函数的定义域、值域,求参数的取值范围等,高考试题中对于解不等式要求较高,往往与函数概念,特别是二次函数、指数函数、对数函数等有关概念和性质密切联系,应重视;从历年高考题目看,关于解不等式的内容年年都有,有的是直接考查解不等式,有的则是间接考查解不等式.●难点磁场(★★★★)解关于x的不等式>1(a≠1)●案例探究[例1]已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若m、n∈[-1,1],m+
2、n≠0时>0.(1)用定义证明f(x)在[-1,1]上是增函数;(2)解不等式:f(x+)<f();(3)若f(x)≤t2-2at+1对所有x∈[-1,1],a∈[-1,1]恒成立,求实数t的取值范围.命题意图:本题是一道函数与不等式相结合的题目,考查学生的分析能力与化归能力,属★★★★★级题目.知识依托:本题主要涉及函数的单调性与奇偶性,而单调性贯穿始终,把所求问题分解转化,是函数中的热点问题;问题的要求的都是变量的取值范围,不等式的思想起到了关键作用.错解分析:(2)问中利用单调性转化为不等式时,x+∈[-1,1],∈[-1,1]必不可少,这恰好是
3、容易忽略的地方.技巧与方法:(1)问单调性的证明,利用奇偶性灵活变通使用已知条件不等式是关键,(3)问利用单调性把f(x)转化成“1”是点睛之笔.(1)证明:任取x1<x2,且x1,x2∈[-1,1],则f(x1)-f(x2)=f(x1)+f(-x2)=·(x1-x2)∵-1≤x1<x2≤1,∴x1+(-x2)≠0,由已知>0,又x1-x2<0,∴f(x1)-f(x2)<0,即f(x)在[-1,1]上为增函数.(2)解:∵f(x)在[-1,1]上为增函数,∴解得:{x
4、-≤x<-1,x∈R}(3)解:由(1)可知f(x)在[-1,1]上为增函数,且f(
5、1)=1,故对x∈[-1,1],恒有f(x)≤1,所以要f(x)≤t2-2at+1对所有x∈[-1,1],a∈[-1,1]恒成立,即要t2-2at+1≥1成立,故t2-2at≥0,记g(a)=t2-2at,对a∈[-1,1],g(a)≥0,只需g(a)在[-1,1]上的最小值大于等于0,g(-1)≥0,g(1)≥0,解得,t≤-2或t=0或t≥2.∴t的取值范围是:{t
6、t≤-2或t=0或t≥2}.[例2]设不等式x2-2ax+a+2≤0的解集为M,如果M[1,4],求实数a的取值范围命题意图:考查二次不等式的解与系数的关系及集合与集合之间的关系,属★
7、★★★级题目.知识依托:本题主要涉及一元二次不等式根与系数的关系及集合与集合之间的关系,以及分类讨论的数学思想.错解分析:M=是符合题设条件的情况之一,出发点是集合之间的关系考虑是否全面,易遗漏;构造关于a的不等式要全面、合理,易出错.技巧与方法:该题实质上是二次函数的区间根问题,充分考虑二次方程、二次不等式、二次函数之间的内在联系是关键所在;数形结合的思想使题目更加明朗.解:M[1,4]有n种情况:其一是M=,此时Δ<0;其二是M≠,此时Δ>0,分三种情况计算a的取值范围.设f(x)=x2-2ax+a+2,有Δ=(-2a)2-(4a+2)=4(a2-
8、a-2)(1)当Δ<0时,-1<a<2,M=[1,4](2)当Δ=0时,a=-1或2.当a=-1时M={-1}[1,4];当a=2时,m={2}[1,4].(3)当Δ>0时,a<-1或a>2.设方程f(x)=0的两根x1,x2,且x1<x2,那么M=[x1,x2],M[1,4]1≤x1<x2≤4即,解得:2<a<,∴M[1,4]时,a的取值范围是(-1,).●锦囊妙计解不等式对学生的运算化简等价转化能力有较高的要求,随着高考命题原则向能力立意的进一步转化,对解不等式的考查将会更是热点,解不等式需要注意下面几个问题:(1)熟练掌握一元一次不等式(组)、
9、一元二次不等式(组)的解法.(2)掌握用序轴标根法解高次不等式和分式不等式,特别要注意因式的处理方法.(3)掌握无理不等式的三种类型的等价形式,指数和对数不等式的几种基本类型的解法.(4)掌握含绝对值不等式的几种基本类型的解法.(5)在解不等式的过程中,要充分运用自己的分析能力,把原不等式等价地转化为易解的不等式.(6)对于含字母的不等式,要能按照正确的分类标准,进行分类讨论.●歼灭难点训练一、选择题1.(★★★★★)设函数f(x)=,已知f(a)>1,则a的取值范围是()A.(-∞,-2)∪(-,+∞)B.(-,)C.(-∞,-2)∪(-,1)D.(
10、-2,-)∪(1,+∞)二、填空题2.(★★★★★)已知f(x)、g(x)都是奇函数,f(x)
此文档下载收益归作者所有