欢迎来到天天文库
浏览记录
ID:9533226
大小:980.50 KB
页数:15页
时间:2018-05-03
《igbt直流斩波电路的设计》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、《电力电子技术》课程设计目录1设计原理分析11.1总体结构分析11.2主电路的设计11.3触发电路的设计21.4驱动电路设计31.5保护电路分析52仿真分析与调试62.1建立仿真模型62.2仿真结果分析83确定实际参数11心得体会12参考文献14附录:1514《电力电子技术》课程设计IGBT直流斩波电路的设计1设计原理分析1.1总体结构分析直流斩波电路的功能是将直流电变为另一固定电压或可调电压的直流电。它在电源的设计上有很重要的应用。一般来说,斩波电路的实现都要依靠全控型器件。在这里,我所设计的是基于IGBT的降压斩波短路。直流降压斩波电路主要分为三个部分,分别为主电路模块,控制电路模块
2、和驱动电路模块。电路的结构框图如下图(图1)所示。图1电路结构框图除了上述主要结构之外,还必须考虑电路中电力电子器件的保护,以及控制电路与主电路的电器隔离。1.2主电路的设计主电路是整个斩波电路的核心,降压过程就由此模块完成。其原理图如图2所示。图2主电路原理图14《电力电子技术》课程设计如图,IGBT在控制信号的作用下开通与关断。开通时,二极管截止,电流io流过大电感L,电源给电感充电,同时为负载供电。而IGBT截止时,电感L开始放电为负载供电,二极管VD导通,形成回路。IGBT以这种方式不断重复开通和关断,而电感L足够大,使得负载电流连续,而电压断续。从总体上看,输出电压的平均值减小
3、了。输出电压与输入电压之比α由控制信号的占空比来决定。这也就是降压斩波电路的工作原理。降压斩波的典型波形如下图所示。图3降压电路波形图图2中的负载为电动机,是一种放电动式负载。反电动势负载有电流断续和电流连续两种工作状态。分别入图3中b)和a)所示。无论哪一种情况,输出电压的平均值都与负载无关,其大小为:(1-1)Ton表示导通的时;Toff表示截止的时间;A表示导通时间占空比。对于输出电流,当Uo>E时电流连续,输出电流平均值大小为:(1-2)当Uo4、来维持负载的电流。1.3触发电路的设计斩波电路有三种控制方式:1)保持开关周期T不变,调节开关导通时间ton,称为脉冲宽度调制或脉冲调宽型:2)保持导通时间不变,改变开关周期T,成为频率调制或调频型;3)导通时间和周期T都可调,是占空比改变,称为混合型。14《电力电子技术》课程设计其中第一种是最常用的方法。PWM控制信号的产生方法有很多。这里我使用的是IGBT的专用触发芯片SG3525,其电路原理图如下。图4PWM信号产生电路SG3525所产生的仅仅只是PWM控制信号,强度不够,不能够直接去驱动IGBT,中间还需要有驱动电路就爱你过信号放大。另外,主电路会产生很大的谐波,很可能影响到控制5、电路中PWM信号的产生。因此,还需要对控制电路和主电路进行电气隔离。1.4驱动电路设计IGBT是电力电子器件,控制电路产生的控制信号一般难以以直接驱动IGBT。因此需要信号放大的电路。另外直流斩波电路会产生很大的电磁干扰,会影响控制电路的正常工作,甚至导致电力电子器件的损坏。因而还设计中还学要有带电器隔离的部分。具体来讲IGBT的驱动要求有一下几点:1)动态驱动能力强,能为IGBT栅极提供具有陡峭前后沿的驱动脉冲。否则IGBT会在开通及关延时,同时要保证当IGBT损坏时驱动电路中的其他元件不会被损坏。2)能向IGBT提供适当的正向和反向栅压,一般取+15V左右的正向栅压比较恰当,14《电6、力电子技术》课程设计取-5V反向栅压能让IGBT可靠截止。3)具有栅压限幅电路,保护栅极不被击穿。IGBT栅极极限电压一般为土20V,驱动信号超出此范围可能破坏栅极。4)当IGBT处于负载短路或过流状态时,能在IGBT允许时间内通过逐渐降低栅压自动抑制故障电流,实现IGBT的软关断。驱动电路的软关断过程不应随输入信号的消失而受到影响。当然驱动电路还要注意其他几个问题。主要是要选择合适的栅极电阻Rg和Rge。以及要有足够的输入输出电隔离能力,要能够保证输入输出信号无这里,我是使用了EXB841集成电路作为IGBT的驱动电路。其具体电路原理图参见附件原理图。EXB841芯片具有单电源、正负偏7、压、过流检测、保护、软关断等主要特性,是一种比较典型的驱动电路。其功能比较完善,在国内得到了广泛应用。当EXB841输人端脚14和脚15有10mA的电流流过时,光祸ISO1导通,A点电位迅速下降至0V,V1和V2截止;V2截止使D点电位上升至20V,V4导通,V5截止,EXB841通过V4及栅极电阻Rg向一个IGBT提供电流使之迅速导通。控制电路使EXB841输入端脚14和脚15无电流流过,光藕ISO1不通,A点电位上升使V1和V2
4、来维持负载的电流。1.3触发电路的设计斩波电路有三种控制方式:1)保持开关周期T不变,调节开关导通时间ton,称为脉冲宽度调制或脉冲调宽型:2)保持导通时间不变,改变开关周期T,成为频率调制或调频型;3)导通时间和周期T都可调,是占空比改变,称为混合型。14《电力电子技术》课程设计其中第一种是最常用的方法。PWM控制信号的产生方法有很多。这里我使用的是IGBT的专用触发芯片SG3525,其电路原理图如下。图4PWM信号产生电路SG3525所产生的仅仅只是PWM控制信号,强度不够,不能够直接去驱动IGBT,中间还需要有驱动电路就爱你过信号放大。另外,主电路会产生很大的谐波,很可能影响到控制
5、电路中PWM信号的产生。因此,还需要对控制电路和主电路进行电气隔离。1.4驱动电路设计IGBT是电力电子器件,控制电路产生的控制信号一般难以以直接驱动IGBT。因此需要信号放大的电路。另外直流斩波电路会产生很大的电磁干扰,会影响控制电路的正常工作,甚至导致电力电子器件的损坏。因而还设计中还学要有带电器隔离的部分。具体来讲IGBT的驱动要求有一下几点:1)动态驱动能力强,能为IGBT栅极提供具有陡峭前后沿的驱动脉冲。否则IGBT会在开通及关延时,同时要保证当IGBT损坏时驱动电路中的其他元件不会被损坏。2)能向IGBT提供适当的正向和反向栅压,一般取+15V左右的正向栅压比较恰当,14《电
6、力电子技术》课程设计取-5V反向栅压能让IGBT可靠截止。3)具有栅压限幅电路,保护栅极不被击穿。IGBT栅极极限电压一般为土20V,驱动信号超出此范围可能破坏栅极。4)当IGBT处于负载短路或过流状态时,能在IGBT允许时间内通过逐渐降低栅压自动抑制故障电流,实现IGBT的软关断。驱动电路的软关断过程不应随输入信号的消失而受到影响。当然驱动电路还要注意其他几个问题。主要是要选择合适的栅极电阻Rg和Rge。以及要有足够的输入输出电隔离能力,要能够保证输入输出信号无这里,我是使用了EXB841集成电路作为IGBT的驱动电路。其具体电路原理图参见附件原理图。EXB841芯片具有单电源、正负偏
7、压、过流检测、保护、软关断等主要特性,是一种比较典型的驱动电路。其功能比较完善,在国内得到了广泛应用。当EXB841输人端脚14和脚15有10mA的电流流过时,光祸ISO1导通,A点电位迅速下降至0V,V1和V2截止;V2截止使D点电位上升至20V,V4导通,V5截止,EXB841通过V4及栅极电阻Rg向一个IGBT提供电流使之迅速导通。控制电路使EXB841输入端脚14和脚15无电流流过,光藕ISO1不通,A点电位上升使V1和V2
此文档下载收益归作者所有