欢迎来到天天文库
浏览记录
ID:9403703
大小:612.00 KB
页数:12页
时间:2018-04-30
《spss统计分析及统计图表的绘制指导书》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、实验三SPSS统计分析及统计图表的绘制一、实验目的要求学生能够进行基本的统计分析;能够对频数分析、描述分析和探索分析的结果进行解读;完成基本的统计图表的绘制;并能够对统计图表进行编辑美化及结果分析;能够理解多元统计分析的操作(聚类分析和因子分析)。二、实验内容与步骤2.1基本的统计分析打开“分析/描述统计”菜单,可以看到以下几种常用的基本描述统计分析方法:1.Frequencies过程(频数分析)频数分析可以考察不同的数据出现的频数及频率,并且可以计算一系列的统计指标,包括百分位值、均值、中位数、众数、合计、偏度、峰
2、度、标准差、方差、全距、最大值、最小值、均值的标准误等。2.Descriptives过程(描述分析)调用此过程可对变量进行描述性统计分析,计算并列出一系列相应的统计指标,包括:均值、合计、标准差、方差、全距、最大值、最小值、均值的标准误、峰度、偏度等。3.Explore过程(探索分析)调用此过程可对变量进行更为深入详尽的描述性统计分析,故称之为探索性统计。它在一般描述性统计指标的基础上,增加有关数据其他特征的文字与图形描述,显得更加细致与全面,有助于用户思考对数据进行进一步分析的方案。Descriptives:输出均
3、数、中位数、众数、5%修正均数、标准误、方差、标准差、最小值、最大值、全距、四分位全距、峰度系数、峰度系数的标准误、偏度系数、偏度系数的标准误;ConfidenceIntervalforMean:平均值的%估计;M-estimators:作中心趋势的粗略最大似然确定,输出四个不同权重的最大似然确定数;Outliers:输出五个最大值与五个最小值;Percentiles:输出第5%、10%、25%、50%、75%、90%、95%位数。4.Crosstabs过程(列联表分析)调用此过程可进行计数资料和某些等级资料的列联表
4、分析,在分析中,可对二维至n维列联表(RC表)资料进行统计描述和χ2检验,并计算相应的百分数指标。此外,还可计算四格表确切概率(Fisher’sExactTest)且有单双侧(One-Tail、Two-Tail),对数似然比检验(LikelihoodRatio)以及线性关系的Mantel-Haenszelχ2检验。2.2基本统计分析结果解读1.频率分析的结果解读图1频率分析的结果解读(附中英文对照,具体详见电子版Excel文件)2.描述分析的结果解读(同上,略)3.探索分析的结果解读图2探索分析的结果解读(附中英文对
5、照,具体详见电子版Excel文件)4.列联表分析的结果解读2.3统计图表的绘制表2一般统计图表1.条形图(Bar)图3条形图定义选项框Summariesforgroupsofcases:以组为单位体现数据;Summariesofseparatevariables:以变量为单位体现数据;Valuesofindividualcases:以观察样例为单位体现数据。多数情形下,统计图都是以组为单位的形式来体现数据的。在定义选项框的上方有3种直条图可选:Simple为单一直条图、Clustered为复式直条图、Stacked为
6、堆积式直条图。2.直方图(Histogram)条形图用来绘制离散型单一类别变量的分布情况,描述连续性数据的分布情况则用直方图。3.方盒图(Boxplot)箱图可用于表现观测数据的中位数、四分位数和两头极端值。中间的粗线为中位数,灰色的箱体为四分位(箱体下端为第二十五百分位数、上端为第七十五百分位数),两头伸出的线条表现极端值(下边为最小值、上边为最大值)。“*”表示极度偏离值,“゜”表示轻度偏离值。4.散点图(Scatter/Dot)散点图用于表现测量数据的原始分布状况,读者可从点的位置判断测量值的高低、大小、变动趋
7、势或变化范围。图4散点图定义选项框Simple为单层散点图,Overlay为多层散点图,Matrix为矩阵散点图,3-D为立体散点图。5.饼图(略)2.4统计图表的美化和编辑统计图绘制好以后,可以双击统计图进行图表的各种美化和编辑。此部分同学们自己练习。2.5多元统计分析(了解)2.5.1聚类分析(Analyze/Classify)1.基本概念聚类分析是根据事物本身的特性研究个体分类的方法,目的在于将相似的事物归类。聚类分析的原则是同一类中的个体有较大的相似性,不同类中的个体差异很大。根据分类对象的不同,可将聚类分析
8、分为样品(观测量)聚类(Q型聚类)和变量聚类(R型聚类)两种:(1)Q型聚类。对观测量(Case)进行聚类(不同的目的选用不同的指标作为分类的依据,如选拔运动员与分课外活动小组)(2)R型聚类。找出彼此独立且有代表性的自变量,而又不丢失大部分信息。在生产活动中不乏有变量聚类的实例,如:衣服号码(身长、胸围、裤长、腰围)、鞋的号码。变量聚类使批量
此文档下载收益归作者所有