欢迎来到天天文库
浏览记录
ID:9359897
大小:129.46 KB
页数:8页
时间:2018-04-28
《测量工具-工作原理》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、电子顺磁共振(EPR)电子顺磁共振(electronparamagnaneticresonance,EPR)是由不配对电子的磁矩发源的一种磁共振技术,可用于从定性和定量方面检测物质原子或分子中所含的不配对电子,并探索其周围环境的结构特性。对自由基而言,轨道磁矩几乎不起作用,总磁矩的绝大部分(99%以上)的贡献来自电子自旋,所以电子顺磁共振亦称“电子自旋共振”(ESR)。工作原理:电子是具有一定质量和带负电荷的一种基本粒子,它能进行两种运动;一种是在围绕原子核的轨道上运动,另一种是对通过其中心的轴所作的自旋。由于电子的运动产生力矩,在运动
2、中产生电流和磁矩。在外加恒磁场H中,电子磁矩的作用如同细小的磁棒或磁针,由于电子的自旋量子数为1/2,故电子在外磁场中只有两种取向:一与H平行,对应于低能级,能量为-1/2gβH;一与H逆平行,对应于高能级,能量为+1/2gβH,两能级之间的能量差为gβH。若在垂直于H的方向,加上频率为v的电磁波使恰能满足hv=gβH这一条件时,低能级的电子即吸收电磁波能量而跃迁到高能级,此即所谓电子顺磁共振。在上述产生电子顺磁共振的基本条件中,h为普朗克常数,g为波谱分裂因子(简称g因子或g值),β为电子磁矩的自然单位,称玻尔磁子。以自由电子的g值=
3、2.00232,β=9.2710×10-21尔格/高斯,h=6.62620×10-27尔格·秒,代入上式,可得电磁波频率与共振磁场之间的关系式:(兆赫)=2.8025H(高斯)X射线光电子能谱分析(XPS)X射线光电子能谱分析(X-rayphotoelectronspectroscopyanalysis) 1887年,HeinrichRudolfHertz发现了光电效应。二十年后的1907年,P.D.Innes用伦琴管、亥姆霍兹线圈、磁场半球(电子能量分析仪)和照像平版做实验来记录宽带发射电子和速度的函数关系。待测物受X光照射后内部电子
4、吸收光能而脱离待测物表面(光电子),透过对光电子能量的分析可了解待测物组成,XPS主要应用是测定电子的结合能来实现对表面元素的定性分析,包括价态。 XPS(X射线光电子能谱)的原理是用X射线去辐射样品,使原子或分子的内层电子或价电子受激发射出来。被光子激发出来的电子称为光电子。可以测量光电子的能量,以光电子的动能为横坐标,相对强度(脉冲/s)为纵坐标可做出光电子能谱图。从而获得试样有关信息。X射线光电子能谱因对化学分析最有用,因此被称为化学分析用电子能谱(ElectronSpectroscopyforChemicalAnalysis)。
5、红外光谱(IR)20世纪初Coblentz已发表了100多种有机化合物的红外光谱图,给有机化学家提供了鉴别未知化合物的有力手段。到50年代末就已经积累了丰富的红外光谱数据。到70年代,在电子计算机蓬勃发展的基础上,傅立叶变换红外光谱(FTIR)实验技术进入现代化学家的实验室,成为结构分析的重要工具。它以高灵敏度、高分辨率、快速扫描、联机操作和高度计算机化的全新面貌使经典的红外光谱技术再获新生。近几十年来一些新技术(如发射光谱、光声光谱、色——红联用等)的出现,使红外光谱技术得到更加蓬勃的发展。原理当一束具有连续波长的红外光通过物质,物质
6、分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到能量较高的振(转)动能级,分子吸收红外辐射后发生振动和转动能级的跃迁,该处波长的光就被物质吸收。 红外光谱所以,红外光谱法实质上是一种根据分子内部原子间的相对振动和分子转动等信息来确定物质分子结构和鉴别化合物的分析方法。将分子吸收红外光的情况用仪器记录下来,就得到红外光谱图。红外光谱图通常用波长(λ)或波数(σ)为横坐标,表示吸收峰的位置,用透光率(T%)或者吸光度(A)为纵坐标,表示吸收强度。当外界电磁波照射分子时,如照射的电磁波的
7、能量与分子的两能级差相等,该频率的电磁波就被该分子吸收,从而引起分子对应能级的跃迁,宏观表现为透射光强度变小。电磁波能量与分子两能级差相等为物质产生红外吸收光谱必须满足条件之一,这决定了吸收峰出现的位置。红外吸收光谱产生的第二个条件是红外光与分子之间有偶合作用,为了满足这个条件,分子振动时其偶极矩必须发生变化。这实际上保证了红外光的能量能传递给分子,这种能量的传递是通过分子振动偶极矩的变化来实现的。并非所有的振动都会产生红外吸收,只有偶极矩发生变化的振动才能引起可观测的红外吸收,这种振动称为红外活性振动;偶极矩等于零的分子振动不能产生红
8、外吸收,称为红外非活性振动。分子的振动形式可以分为两大类:伸缩振动和弯曲振动。前者是指原子沿键轴方向的往复运动,振动过程中键长发生变化。后者是指原子垂直于化学键方向的振动。通常用不同的符号表示不同的振动形式
此文档下载收益归作者所有