数学组初高中衔接校本教材(最终稿)

数学组初高中衔接校本教材(最终稿)

ID:9344922

大小:1.31 MB

页数:26页

时间:2018-04-28

数学组初高中衔接校本教材(最终稿)_第1页
数学组初高中衔接校本教材(最终稿)_第2页
数学组初高中衔接校本教材(最终稿)_第3页
数学组初高中衔接校本教材(最终稿)_第4页
数学组初高中衔接校本教材(最终稿)_第5页
资源描述:

《数学组初高中衔接校本教材(最终稿)》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、亲爱的新高一的同学们:祝贺你们步入高中时代,下面有一个摆在我们面前的棘手问题急需我们师生共同努力才能解决,即“初高中衔接问题”。由于课程改革,目前我区初中是新课标,而高中也是新课程的学习,初高中不衔接问题现在显得比较突出。面对教学中将存在的问题,我们高一数学组的老师们假期里加班加点,赶制了一份校本衔接教材,意在培养大家自学能力,同时降低同学们初高中衔接中的不适应度,希望大家将假期利用起来,一开学对这篇自学教材的学习将有相应的检测,愿大家为新学期做好准备。一、数与式的运算一)、必会的乘法公式【公式1】证明:等式成立【例1】计

2、算:解:原式=说明:多项式乘法的结果一般是按某个字母的降幂或升幂排列.【公式2】(立方和公式)证明:说明:请同学用文字语言表述公式2.【例2】计算:(2a+b)(4a2-2ab+b2)=8a3+b3【公式3】(立方差公式)1.计算(1)(3x+2y)(9x2-6xy+4y2)=(2)(2x-3)(4x2+6xy+9)=(3)=(4)(a+b)(a2-ab+b2)(a-b)(a2+ab+b2)=2.利用立方和、立方差公式进行因式分解(1)27m3-n3=(2)27m3-n3=(3)x3-125=(4)m6-n6=【公式4】【

3、公式5】【例3】计算:(1)(2)(3)(4)解:(1)原式=(2)原式=(3)原式=(4)原式=说明:(1)在进行代数式的乘法、除法运算时,要观察代数式的结构是否满足乘法公式的结构.(2)为了更好地使用乘法公式,记住1、2、3、4、…、20的平方数和1、2、3、4、…、10的立方数,是非常有好处的.【例4】已知,求的值.解:原式=说明:本题若先从方程中解出的值后,再代入代数式求值,则计算较烦琐.本题是根据条件式与求值式的联系,用整体代换的方法计算,简化了计算.请注意整体代换法.本题的解法,体现了“正难则反”的解题策略,根

4、据题求利用题知,是明智之举.【例5】已知,求的值.解:原式=①②,把②代入①得原式=说明:注意字母的整体代换技巧的应用.二)、根式式子叫做二次根式,其性质如下:(1)(2)(3)(4)【例6】化简下列各式:(1)(2)解:(1)原式=*(2)原式=说明:请注意性质的使用:当化去绝对值符号但字母的范围未知时,要对字母的取值分类讨论.【例7】计算(没有特殊说明,本节中出现的字母均为正数):(1)(2)(3)(4)解:(1)=(2)原式=(3)原式=(4)原式=说明:(1)二次根式的化简结果应满足:①被开方数的因数是整数,因式是

5、整式;②被开方数不含能开得尽方的因数或因式.(2)二次根式的化简常见类型有下列两种:①被开方数是整数或整式.化简时,先将它分解因数或因式,然后把开得尽方的因数或因式开出来;②分母中有根式(如)或被开方数有分母(如).这时可将其化为形式(如可化为),转化为“分母中有根式”的情况.化简时,要把分母中的根式化为有理式,采取分子、分母同乘以一个根式进行化简.(如化为,其中与叫做互为有理化因式).有理化因式和分母有理化有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,那么这两个代数式叫做有理化因式。如与;与互为有

6、理化因式。分母有理化:在分母含有根式的式子里,把分母中的根式化去,叫做分母有理化。【例8】计算:(1)(2)解:(1)原式=(2)原式=说明:有理数的的运算法则都适用于加法、乘法的运算律以及多项式的乘法公式、分式二次根式的运算.【例9】设,求的值.解:原式=说明:有关代数式的求值问题:(1)先化简后求值;(2)当直接代入运算较复杂时,可根据结论的结构特点,倒推几步,再代入条件,有时整体代入可简化计算量.练习1.二次根式成立的条件是()A.B.C.D.是任意实数2.若,则的值是()A.-3B.3C.-9D.93.计算:(1)

7、(2)(3)(4)4.化简(下列的取值范围均使根式有意义):(1)(2)(3)(4)5.化简:(1)(2)6.若,则的值为():A.B.C.D.7.设,求代数式的值.8.已知,求代数式的值.9.设,求的值.10.化简或计算:(1)(2)(3)答案:1.C2.A3.(1)(2)(3)(4)4.5.6.D7.8.39.10.三)、分式当分式的分子、分母中至少有一个是分式时,就叫做繁分式,繁分式的化简常用以下两种方法:(1)利用除法法则;(2)利用分式的基本性质.【例10】化简解法一:原式=解法一:原式=说明:解法一的运算方法是

8、从最内部的分式入手,采取通分的方式逐步脱掉繁分式,解法二则是利用分式的基本性质进行化简.一般根据题目特点综合使用两种方法.【例11】化简解:原式=说明:(1)分式的乘除运算一般化为乘法进行,当分子、分母为多项式时,应先因式分解再进行约分化简;(2)分式的计算结果应是最简分式或整式.四)、多项式除以多项式

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。