欢迎来到天天文库
浏览记录
ID:9338660
大小:431.00 KB
页数:6页
时间:2018-04-28
《建立时间与保持时间》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、建立时间与保持时间建立时间(Tsu:setuptime)是指在时钟沿到来之前数据从不稳定到稳定所需的时间,如果建立的时间不满足要求那么数据将不能在这个时钟上升沿被稳定的打入触发器;保持时间(Th:holdtime)是指数据稳定后保持的时间,如果保持时间不满足要求那么数据同样也不能被稳定的打入触发器。建立与保持时间的简单示意图如下图1所示。图1保持时间与建立时间的示意图在FPGA设计的同一个模块中常常是包含组合逻辑与时序逻辑,为了保证在这些逻辑的接口处数据能稳定的被处理,那么对建立时间与保持时间建立清晰的概念非常重要。
2、下面在认识了建立时间与保持时间的概念上思考如下的问题。图2同步设计中的一个基本模型图2为统一采用一个时钟的同步设计中一个基本的模型。图中Tco是触发器的数据输出的延时;Tdelay是组合逻辑的延时;Tsetup是触发器的建立时间;Tpd为时钟的延时。如果第一个触发器D1建立时间最大为T1max,最小为T1min,组合逻辑的延时最大为T2max,最小为T2min。问第二个触发器D2立时间T3与保持时间T4应该满足什么条件,或者是知道了T3与T4那么能容许的最大时钟周期是多少。这个问题是在设计中必须考虑的问题,只有弄清了
3、这个问题才能保证所设计的组合逻辑的延时是否满足了要求。下面通过时序图来分析:设第一个触发器的输入为D1,输出为Q1,第二个触发器的输入为D2,输出为Q2;时钟统一在上升沿进行采样,为了便于分析我们讨论两种情况即第一:假设时钟的延时Tpd为零,其实这种情况在FPGA设计中是常常满足的,由于在FPGA设计中一般是采用统一的系统时钟,也就是利用从全局时钟管脚输入的时钟,这样在内部时钟的延时完全可以忽略不计。这种情况下不必考虑保持时间,因为每个数据都是保持一个时钟节拍同时又有线路的延时,也就是都是基于CLOCK的延迟远小于数
4、据的延迟基础上,所以保持时间都能满足要求,重点是要关心建立时间,此时如果D2的建立时间满足要求那么时序图应该如图3所示。从图中可以看出如果:T-Tco-Tdelay>T3即:Tdelay5、4组合逻辑的延时过大时序不满足要求从而可以推出T-Tco-T2max>=T3这也就是要求的D2的建立时间。从上面的时序图中也可以看出,D2的建立时间与保持时间与D1的建立与保持时间是没有关系的,而只和D2前面的组合逻辑和D1的数据传输延时有关,这也是一个很重要的结论。说明了延时没有叠加效应。第二种情况如果时钟存在延时,这种情况下就要考虑保持时间了,同时也需要考虑建立时间。时钟出现较大的延时多是采用了异步时钟的设计方法,这种方法较难保证数据的同步性,所以实际的设计中很少采用。此时如果建立时间与保持时间都满足要求那么输出6、的时序如图5所示。图5时钟存在延时但满足时序从图5中可以容易的看出对建立时间放宽了Tpd,所以D2的建立时间需满足要求:Tpd+T-Tco-T2max>=T3由于建立时间与保持时间的和是稳定的一个时钟周期,如果时钟有延时,同时数据的延时也较小那么建立时间必然是增大的,保持时间就会随之减小,如果减小到不满足D2的保持时间要求时就不能采集到正确的数据,如图6所示。这时即T-(Tpd+T-Tco-T2min)=T4即Tco+T2min7、-Tpd>=T4从上式也可以看出如果Tpd=0也就是时钟的延时为0那么同样是要求Tco+T2min>T4,但是在实际的应用中由于T2的延时也就是线路的延时远远大于触发器的保持时间即T4所以不必要关系保持时间。图6时钟存在延时且保持时间不满足要求综上所述,如果不考虑时钟的延时那么只需关心建立时间,如果考虑时钟的延时那么更需关心保持时间。下面将要分析在FPGA设计中如何提高同步系统中的工作时钟。如何提高同步系统中的工作时钟从上面的分析可以看出同步系统时对D2建立时间T3的要求为:T-Tco-T2max>=T3所以很容易推8、出T>=T3+Tco+T2max,其中T3为D2的建立时间Tset,T2为组合逻辑的延时。在一个设计中T3和Tco都是由器件决定的固定值,可控的也只有T2也就时输入端组合逻辑的延时,所以通过尽量来减小T2就可以提高系统的工作时钟。为了达到减小T2在设计中可以用下面不同的几种方法综合来实现。通过改变走线的方式来减小延时以altera的器件为例,我
5、4组合逻辑的延时过大时序不满足要求从而可以推出T-Tco-T2max>=T3这也就是要求的D2的建立时间。从上面的时序图中也可以看出,D2的建立时间与保持时间与D1的建立与保持时间是没有关系的,而只和D2前面的组合逻辑和D1的数据传输延时有关,这也是一个很重要的结论。说明了延时没有叠加效应。第二种情况如果时钟存在延时,这种情况下就要考虑保持时间了,同时也需要考虑建立时间。时钟出现较大的延时多是采用了异步时钟的设计方法,这种方法较难保证数据的同步性,所以实际的设计中很少采用。此时如果建立时间与保持时间都满足要求那么输出
6、的时序如图5所示。图5时钟存在延时但满足时序从图5中可以容易的看出对建立时间放宽了Tpd,所以D2的建立时间需满足要求:Tpd+T-Tco-T2max>=T3由于建立时间与保持时间的和是稳定的一个时钟周期,如果时钟有延时,同时数据的延时也较小那么建立时间必然是增大的,保持时间就会随之减小,如果减小到不满足D2的保持时间要求时就不能采集到正确的数据,如图6所示。这时即T-(Tpd+T-Tco-T2min)=T4即Tco+T2min
7、-Tpd>=T4从上式也可以看出如果Tpd=0也就是时钟的延时为0那么同样是要求Tco+T2min>T4,但是在实际的应用中由于T2的延时也就是线路的延时远远大于触发器的保持时间即T4所以不必要关系保持时间。图6时钟存在延时且保持时间不满足要求综上所述,如果不考虑时钟的延时那么只需关心建立时间,如果考虑时钟的延时那么更需关心保持时间。下面将要分析在FPGA设计中如何提高同步系统中的工作时钟。如何提高同步系统中的工作时钟从上面的分析可以看出同步系统时对D2建立时间T3的要求为:T-Tco-T2max>=T3所以很容易推
8、出T>=T3+Tco+T2max,其中T3为D2的建立时间Tset,T2为组合逻辑的延时。在一个设计中T3和Tco都是由器件决定的固定值,可控的也只有T2也就时输入端组合逻辑的延时,所以通过尽量来减小T2就可以提高系统的工作时钟。为了达到减小T2在设计中可以用下面不同的几种方法综合来实现。通过改变走线的方式来减小延时以altera的器件为例,我
此文档下载收益归作者所有