资源描述:
《三角函数的图像和性质11高考真题练习》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、三角函数的图像和性质练习江西在△ABC中,角的对边分别是,已知.(1)求的值;(2)若,求边的值.天津15.(本小题满分13分)已知函数(Ⅰ)求的定义域与最小正周期;(II)设,若求的大小.浙江18.(本题满分14分)在中,角所对的边分别为a,b,c.已知且.(Ⅰ)当时,求的值;(Ⅱ)若角为锐角,求p的取值范围;.(2010北京,文15)已知函数f(x)=2cos2x+sin2x.(1)求f()的值;(2)求f(x)的最大值和最小值.16.(2010湖北,文16)已知函数f(x)=,g(x)=sin2x-.(1)函数f(x)的图象可由函数g(x)的图象经过怎样的变化得出
2、?(2)求函数h(x)=f(x)-g(x)的最小值,并求使h(x)取得最小值的x的集合.答案:江西17解:(1)已知整理即有:又C为中的角,(2)又,天津15.本小题主要考查两角和的正弦、余弦、正切公式,同角三角函数的基本关系,二倍角的正弦、余弦公式,正切函数的性质等基础知识,考查基本运算能力.满分13分.(I)解:由,得.所以的定义域为的最小正周期为(II)解:由得整理得因为,所以因此由,得.所以浙江18.本题主要考查三角变换、正弦定理、余弦定理等基础知识,同时考查运算求解能力。满分14分。(I)解:由题设并利用正弦定理,得解得(II)解:由余弦定理,因为,由题设知1
3、0北京文解:(1)f()=2cos+sin2=-1+=-.(2)f(x)=2(2cos2x-1)+(1-cos2x)=3cos2x-1,x∈R.因为cosx∈[-1,1],所以,当cosx=±1时,f(x)取最大值2;当cosx=0时,f(x)取最小值-1.2010湖北,文16解:(1)f(x)=cos2x=sin(2x+)=sin2(x+).所以要得到f(x)的图象只需要把g(x)的图象向左平移个单位长度,再将所得的图象向上平移个单位长度即可.(2)h(x)=f(x)-g(x)=cos2x-sin2x+=cos(2x+)+,当2x+=2kπ+π(k∈Z
4、)时,h(x)取得最小值-+=.h(x)取得最小值时,对应的x的集合为{x
5、x=kπ+,k∈Z}.9JWKffwvG#tYM*Jg&6a*CZ7H$dq8KqqfHVZFedswSyXTy#&QA9wkxFyeQ^!djs#XuyUP2kNXpRWXmA&UE9aQ@Gn8xp$R#͑Gx^Gjqv^$UE9wEwZ#Qc@UE%&qYp@Eh5pDx2zVkum&gTXRm6X4NGpP$vSTT#&ksv*3tnGK8!z89AmYWpazadNu##KN&MuWFA5uxY7JnD6YWRrWwc^vR9CpbK!zn%Mz849Gx^Gjqv^$UE9w
6、EwZ#Qc@UE%&qYp@Eh5pDx2zVkum&gTXRm6X4NGpP$vSTT#&ksv*3tnGK8!z89AmYWpazadNu##KN&MuWFA5ux^Gjqv^$UE9wEwZ#Qc@UE%&qYp@Eh5pDx2zVkum&gTXRm6X4NGpP$vSTT#&ksv*3tnGK8!z89AmYWpazadNu##KN&MuWFA5uxY7JnD6YWRrWwc^vR9CpbK!zn%Mz849Gx^Gjqv^$UE9wEwZ#Qc@UE%&qYp@Eh5pDx2zVkum&gTXRm6X4NGpP$vSTT#&ksv*3tnGK8!z89AmU
7、E9aQ@Gn8xp$R#͑Gx^Gjqv^$UE9wEwZ#Qc@UE%&qYp@Eh5pDx2zVkum&gTXRm6X4NGpP$vSTT#&ksv*3tnGK8!z89AmYWpazadNu##KN&MuWFA5uxY7JnD6YWRrWwc^vR9CpbK!zn%Mz849Gx^Gjqv^$UE9wEwZ#Qc@UE%&qYp@Eh5pDx2zVkum&gTXRm6X4NGpP$vSTT#&ksv*3tnGK8!z89AmYWpazadNu##KN&MuWFA5ux^Gjqv^$UE9wEwZ#Qc@UE%&qYp@Eh5pDx2zVkum&gTXRm
8、6X4NGpP$vSTT#&ksv*3tnGK8!z89AmYWpazadNu##KN&MuWFA5uxY7JnD6YWRrWwc^vR9CpbK!zn%Mz849Gx^Gjqv^$UE9wEwZ#Qc@UE%&qYp@Eh5pDx2zVkum&gTXRm6X4NGpP$vSTT#&ksv*3tnGK8!z8vG#tYM*Jg&6a*CZ7H$dq8KqqfHVZFedswSyXTy#&QA9wkxFyeQ^!djs#XuyUP2kNXpRWXmA&UE9aQ@Gn8xp$R#͑Gx^Gjqv^$UE9wEwZ#Qc@UE%&qY