周世勋《量子力学》习题解答

周世勋《量子力学》习题解答

ID:9164483

大小:1.90 MB

页数:59页

时间:2018-04-20

周世勋《量子力学》习题解答_第1页
周世勋《量子力学》习题解答_第2页
周世勋《量子力学》习题解答_第3页
周世勋《量子力学》习题解答_第4页
周世勋《量子力学》习题解答_第5页
资源描述:

《周世勋《量子力学》习题解答》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、第二章2.1.证明在定态中,几率流与时间无关。证明:对于定态,可令可见无关。2.2由下列定态波函数计算几率流密度:从所得结果说明表示向外传播的球面波,表示向内(即向原点)传播的球面波。解:在球坐标中同向。表示向外传播的球面波。可见,反向。表示向内(即向原点)传播的球面波。补充:设,粒子的位置几率分布如何?这个波函数能否归一化?∴波函数不能按方式归一化。其相对位置几率分布函数为表示粒子在空间各处出现的几率相同。2.3一粒子在一维势场中运动,求粒子的能级和对应的波函数。解:无关,是定态问题。其定态S—方程在各区域的具体形式为Ⅰ:①Ⅱ:②Ⅲ:③由于(1)、(3)

2、方程中,由于,要等式成立,必须即粒子不能运动到势阱以外的地方去。方程(2)可变为令,得其解为④根据波函数的标准条件确定系数A,B,由连续性条件,得⑤⑥    ⑤⑥∴由归一化条件得由可见E是量子化的。对应于的归一化的定态波函数为2.4.证明(2.6-14)式中的归一化常数是证:(2.6-14)由归一化,得∴归一化常数2.5求一维谐振子处在激发态时几率最大的位置。解:令,得由的表达式可知,时,。显然不是最大几率的位置。而可见是所求几率最大的位置。2.6在一维势场中运动的粒子,势能对原点对称:,证明粒子的定态波函数具有确定的宇称。证:在一维势场中运动的粒子的定态

3、S-方程为①将式中的代换,得②利用,得③比较①、③式可知,都是描写在同一势场作用下的粒子状态的波函数。由于它们描写的是同一个状态,因此之间只能相差一个常数。方程①、③可相互进行空间反演而得其对方,由①经反演,可得③,④由③再经反演,可得①,反演步骤与上完全相同,即是完全等价的。 ⑤④乘⑤,得可见,当时,,具有偶宇称,当时,,具有奇宇称,当势场满足时,粒子的定态波函数具有确定的宇称。2.7一粒子在一维势阱中运动,求束缚态()的能级所满足的方程。解:粒子所满足的S-方程为按势能的形式分区域的具体形式为Ⅰ:①Ⅱ:②Ⅲ:③整理后,得Ⅰ:④Ⅱ:.⑤Ⅲ:⑥令则Ⅰ:⑦Ⅱ

4、:⑧Ⅲ:⑨各方程的解为:由波函数的有限性,有:因此由波函数的连续性,有整理(10)、(11)、(12)、(13)式,并合并成方程组,得解此方程即可得出B、C、D、F,进而得出波函数的具体形式,要方程组有非零解,必须∵∴即为所求束缚态能级所满足的方程。方法二:接(13)式另一解法:(11)-(13)(10)+(12)(11)+(13)(12)-(10)令则合并:利用另:最简方法-平移坐标轴法解:Ⅰ:(χ≤0)Ⅱ:(0<χ<2)Ⅲ:(χ≥2)束缚态<<因此由波函数的连续性,有(7)代入(6)利用(4)、(5),得2.8分子间的范德瓦耳斯力所产生的势能可以近似表

5、示为求束缚态的能级所满足的方程。解:势能曲线如图示,分成四个区域求解。定态S-方程为对各区域的具体形式为Ⅰ:Ⅱ:Ⅲ:Ⅳ:对于区域Ⅰ,,粒子不可能到达此区域,故而.①②③对于束缚态来说,有∴④⑤⑥各方程的解分别为由波函数的有限性,得∴由波函数及其一阶导数的连续,得∴⑦⑧⑨⑩由⑦、⑧,得(11)由⑨、⑩得(12)令,则①式变为联立(12)、(13)得,要此方程组有非零解,必须把代入即得:此即为所要求的束缚态能级所满足的方程。附:从方程⑩之后也可以直接用行列式求解。见附页。此即为所求方程。第三章3.1一维谐振子处在基态,求:(1)势能的平均值;(2)动能的平均值

6、;(3)动量的几率分布函数。解:(1) (2)或(3)动量几率分布函数为3.2.氢原子处在基态,求:(1)r的平均值;(2)势能的平均值;(3)最可几半径;(4)动能的平均值;(5)动量的几率分布函数。解:(1)(3)电子出现在r+dr球壳内出现的几率为令当为几率最小位置∴是最可几半径。(4)()(5)动量几率分布函数3.3证明氢原子中电子运动所产生的电流密度在球极坐标中的分量是证:电子的电流密度为:在球极坐标中为式中为单位矢量中的和部分是实数。∴可见,3.4由上题可知,氢原子中的电流可以看作是由许多圆周电流组成的。(1)求一圆周电流的磁矩。(2)证明氢原

7、子磁矩为原子磁矩与角动量之比为:这个比值称为回转磁比率。解:(1)圆周电流的磁矩为(为圆周电流,为圆周所围面积)(2)氢原子的磁矩为在单位制中原子磁矩与角动量之比为:3.5一刚性转子转动惯量为I,它的能量的经典表示式是,L为角动量,求与此对应的量子体系在下列情况下的定态能量及波函数:(1)转子绕一固定轴转动:(2)转子绕一固定点转动:解:(1)设该固定轴沿Z轴方向,则有哈密顿算符其本征方程为(无关,属定态问题)令,则取其解为(可正可负可为零)由波函数的单值性,应有即∴m=0,±1,±2,…转子的定态能量为(m=0,±1,±2,…)可见能量只能取一系列分立值

8、,构成分立谱。定态波函数为A为归一化常数,由归一化条件∴转子的归一

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。