高中数学排列组合相关公式1

高中数学排列组合相关公式1

ID:8961458

大小:18.00 KB

页数:2页

时间:2018-04-13

高中数学排列组合相关公式1_第1页
高中数学排列组合相关公式1_第2页
资源描述:

《高中数学排列组合相关公式1》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、排列组合公式排列定义   从n个不同的元素中,取r个不重复的元素,按次序排列,称为从n个中取r个的无重排列。排列的全体组成的集合用P(n,r)表示。排列的个数用P(n,r)表示。当r=n时称为全排列。一般不说可重即无重。可重排列的相应记号为P(n,r),P(n,r)。组合定义从n个不同元素中取r个不重复的元素组成一个子集,而不考虑其元素的顺序,称为从n个中取r个的无重组合。组合的全体组成的集合用C(n,r)表示,组合的个数用C(n,r)表示,对应于可重组合有记号C(n,r),C(n,r)。一、排列组合部分是中学数学中的难

2、点之一,原因在于  (1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力;  (2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解;  (3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大;  (4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。二、两个基本计数原理及应用  (1)加法原理和分类计数法  1.加法原理  2.加法原理的集合形式  3.分类的要求  每一类中的每一种方法都可以独立

3、地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)  (2)乘法原理和分步计数法  1.乘法原理  2.合理分步的要求  任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同例1:用1、2、3、4、5、6、7、8、9组成数字不重复的六位数集合A为数字不重复的九位数的集合,S(A)=9!集合B为数字不重复的六位数的集合。把集合A分为子集的集合,规则为前6位数相

4、同的元素构成一个子集。显然各子集没有共同元素。每个子集元素的个数,等于剩余的3个数的全排列,即3!这时集合B的元素与A的子集存在一一对应关系,则S(A)=S(B)*3!S(B)=9!/3!这就是我们用以前的方法求出的P(9,6)例2:从编号为1-9的队员中选6人组成一个队,问有多少种选法?设不同选法构成的集合为C,集合B为数字不重复的六位数的集合。把集合B分为子集的集合,规则为全部由相同数字组成的数组成一个子集,则每个子集都是某6个数的全排列,即每个子集有6!个元素。这时集合C的元素与B的子集存在一一对应关系,则S(B)

5、=S(C)*6!S(C)=9!/3!/6!这就是我们用以前的方法求出的C(9,6)以上都是简单的例子,似乎不用弄得这么复杂。但是集合的观念才是排列组合公式的来源,也是对公式更深刻的认识。大家可能没有意识到,在我们平时数物品的数量时,说1,2,3,4,5,一共有5个,这时我们就是在把物品的集合与集合(1,2,3,4,5)建立一一对应的关系,正是因为物品数量与集合(1,2,3,4,5)的元素个数相等,所以我们才说物品共有5个。我写这篇文章的目的是把这些潜在的思路变得清晰,从而能用它解决更复杂的问题。例3:9个人坐成一圈,问不

6、同坐法有多少种?9个人排成一排,不同排法有9!种,对应集合为前面的集合A9个人坐成一圈的不同之处在于,没有起点和终点之分。设集合D为坐成一圈的坐法的集合。以任何人为起点,把圈展开成直线,在集合A中都对应不同元素,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。