欢迎来到天天文库
浏览记录
ID:8921787
大小:39.50 KB
页数:5页
时间:2018-04-12
《泉州实验中学入学数学题目2》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、二、尝试法解应用题时,按照自己认为可能的想法,通过尝试,探索规律,从而获得解题方法,叫做尝试法。尝试法也叫“尝试探索法”。一般来说,在尝试时可以提出假设、猜想,无论是假设或猜想,都要目的明确,尽可能恰当、合理,都要知道在假设、猜想和尝试过程中得到的结果是什么,从而减少尝试的次数,提高解题的效率。例1把数字3、4、6、7填在图2-1的空格里,使图中横行、坚列三个数相加都等于14。(适于一年级程度)解:七八岁的儿童,观察、总结、发现规律的能力薄弱,做这种填空练习,一般都感到困难。可先启发他们认识解此题的关键在于试填中间的一格。中间一格的数确定后,下面一格的
2、数便可由竖列三个数之和等于14来确定,剩下的两个数自然应填入左右两格了。中间一格应填什么数呢?先看一个日常生活中的例子。如果我们要从一种月刊全年的合订本中找到第六期的第23页,我们一定要从合订本大约一半的地方打开。要是翻到第五期,就要再往后翻;要是翻到第七期、第八期,就要往前翻。找到第六期后,再往接近第23页的地方翻,……这样反复试探几次,步步逼近,最后就能找到这一页。这就是在用“尝试法”解决问题。本题的试数范围是3、4、6、7四个数,可由小至大,或由大至小依次填在中间的格中,按“横行、竖列三个数相加都得14”的要求来逐个尝试。
3、 如果中间的格中填3,则竖列下面的一格应填多少呢?因为14-5-3=6,所以竖列下面的一格中应填6(图2-2)。下面就要把剩下的4、7,分别填入横行左右的两个格中(图2-3)。把横行格中的4、3、7三个数加起来,得14,合乎题目要求。如果中间一格填4、或填6、7都不合乎题目的要求。所以本题的答案是图2-3或图2-4。例2把1、2、3……11各数填在图2-5的方格里,使每一横行、每一竖行的数相加都等于18。(教科书第四册第57页的思考题,适于二年级程度)解:图2-5中有11个格,正好每一格填写一个数。图2-6中写有A、B、C的三个
4、格中的三个数,既要参加横向的运算,又要参加纵向的运算,就是说这三个数都要被用两次。因此,确定A、B、C这三个数是解此题的关键。 因为1~11之中中间的三个数是5、6、7,所以,我们以A、B、C分别为5、6、7开始尝试(图2-7)。以6为中心尝试,看6上、下两个格中应填什么数。因为18-6=12,所以6上、下两格中数字的和应是12。考虑6已是1~11之中中间的数,那么6上、下两格中的数应是1~11之中两头的数。再考虑6上面的数还要与5相加,6下面的数还要与7相加,5比7小,题中要求是三个数相加都等于18,所以在6上面
5、的格中填11,在6下面的格中填1(图2-8)。6+11+1=18看图2-8。6上面的数是11,11左邻的数是5,18-11-5=2,所以5左邻的数是2(图2-9)。再看图2-8。6下面的数是1,1右邻的数是7,18-1-7=10,所以7右邻的数是10(图2-9)。现在1~11之中只剩下3、4、8、9这四个数,图2-9中也只剩下四个空格。在5的上、下,在7的上、下都应填什么数呢? 因为18-5=13,所以5上、下两格中数字的和应是13,3、4、8、9这四个数中,只有4+9=13,所以在5的上、下两格中应填9与4(图2
6、-10)。看图2-10。因为6左邻的数是4,18-4-6=8,所以6右邻的数是8。因为18-7-8=3,并且1-11的数中,只剩下3没有填上,所以在7下面的格中应填上3。图2-10是填完数字的图形。*例3在9只规格相同的手镯中混有1只较重的假手镯。在一架没有砝码的天平上,最多只能称两次,你能把假手镯找出来吗?(适于三年级程度)解:先把9只手镯分成A、B、C三组,每组3只。①把A、B两组放在天平左右两边的秤盘上,如果平衡,则假的1只在C组里;若不平衡,则哪组较重,假的就在哪组里。②再把有假手镯的那组中的两只分别放在天平的左右秤盘上。如果平衡,余下的1只是
7、假的;若不平衡,较重的那只是假的。*例4在下面的15个8之间的任何位置上,添上+、-、×、÷符号,使得下面的算式成立。(适于三年级程度)888888888888888=1986解:先找一个接近1986的数,如:8888÷8+888=1999。1999比1986大13。往下要用剩下的7个8经过怎样的运算得出一个等于13的算式呢?88÷8=11,11与13接近,只差2。往下就要看用剩下的4个8经过怎样的运算等于2。8÷8+8÷8=2。把上面的思路组合在一起,得到下面的算式:8888÷8+888-88÷8-8÷8-8÷8=1986例5三个连续自然数的积是12
8、0,求这三个数。(适于四年级程度)解:假设这三个数是2、3、4,则:2×3×4=2424<12
此文档下载收益归作者所有