公务员考试行测专项高分系列:数学运算

公务员考试行测专项高分系列:数学运算

ID:8913994

大小:47.00 KB

页数:3页

时间:2018-04-12

公务员考试行测专项高分系列:数学运算_第1页
公务员考试行测专项高分系列:数学运算_第2页
公务员考试行测专项高分系列:数学运算_第3页
资源描述:

《公务员考试行测专项高分系列:数学运算》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、公务员考试行测专项高分系列:数学运算数学运算因其计算量大,耗时多等原因历来是被很多考生放弃的部分,但因其分值较高,此部分得分不理想直接影响到行测成绩的高低。要走出数学运算低分耗时的困境,在复习备考时应采取一定的应对策略。一是熟悉题型,二是掌握解题方法和技巧,三是进行一定量的练习,提升解题速度。在此简单介绍几种数学运算中常用的解题技巧:尾数法、代入排除法、特值法、方程法、十字交叉法、图解法。(一)尾数法尾数法是指在考试过程中,不计算算式各项的值,只考虑算式各项的尾数,进而确定结果的尾数。由此在选项中确定含此尾数

2、的选项。尾数的考查主要是几个数和、差、积的尾数或自然数多次方的尾数。尾数法一般适用于题目计算量很大或者很难计算出结果的题目。例1:173×173×173-162×162×162=(    )A.926183    B.936185C.926187    D.926189解题分析:此题考查的是尾数的计算,虽然此题是简单的多项相乘,但是因为项数多,导致计算量偏大,若选择计算则浪费大量时间;若用尾数计算则转化为3×3×3-2×2×2=27-8=19,结合选项末位为9的为D。故此题答案为D。(二)代入排除法代入排除法

3、是应对客观题的常见且有效的一种方法,在公务员考试的数学运算中,灵活应用会起到事半功倍的效果,其有效避开解题的常规思路,直接从选项出发,通过直接或选择性代入,迅速找到符合条件的选项。例2:某四位数各个位数之和是22,其中千位与个位数字之和比百位数字与十位数字之和小2,十位数字与个位数字之和比千位数字与百位数字之和大6,千位数字与十位数字之和比百位数字与个位数字之和小10,则这个四位数是(    )。A.5395   B.4756C.1759   D.8392解题分析:题目中要求是一个四位数,且给出四个条件,显然

4、可以通过设未知数列方程求此四位数各个位数的数字。但此题若用代入排除法,即验证此数是否符合题中条件,可轻易得出符合题意的仅C项。故此题答案为C。(三)特值法特值法是通过对某一个未知量取一个特殊值,将未知值变成已知量来简化问题的方法。这种方法是猜证结合思想的具体应用,也是公务员考试中非常常见的一种方法。常用的特殊方法有特殊数值、特殊数列、特殊函数、特殊方程、特殊点等。一般,首先假设出一个特殊值,然后将特殊值代入题干,通过一系列数学运算推导出结论;有时候也会通过检验特例、举反例等方法来排除选项,这一点和代入排除法有

5、些类似。例3:有4个数,它们的和是180,且第一个数是第二个数的2倍,第二个数是第三个数的2倍,第三个数又是第四个数的2倍,问第三个数应是:(    )。A.42   B.24   C.21   D.12解题分析:设第四个数为1,则前三个数分别为2、4、8,和为15。故可得第四个数=180/15=12。所以第三个数为24。故此题答案为B。(四)列方程求解法在公务员考试中,最常出现的是二元一次方程的,其通用形式是ax+by=c,其中a、b、c为已知整数,x,y为所求自然数,在解不定方程时,我们需要利用整数的整除

6、性、奇偶性、自然数的质合性、尾数特性等多种数学知识来得到答案。例4:有271位游客欲乘大、小两种客车旅游,已知大客车有37个座位,小客车有20个座位。为保证每位乘客均有座位,且车上没有空座位,则需要大客车的辆数是(    )。A.1辆   B.3辆   C.2辆   D.4辆解题分析:设大客车需要x辆,小客车需要y辆,则37x+20y=271。针对此不定式方程,就要应用整数的特性,20y的尾数必然是0,则37x的尾数只能是1,结合选项,只有x=3时才能满足条件。故答案为B。(五)十字交叉法对于两种溶液,混合的

7、结果:某一溶液相对于混合后溶液,溶质增加;另一种溶液相对于混合后溶液,溶质减少。由于总溶质不变,因此增加的溶质等于减少的溶质,这就是十字交叉法的原理。例5:甲杯中有浓度为17%的溶液400克,乙杯中有浓度为23%的同种溶液600克,现在从甲、乙取出相同质量的溶液,把甲杯取出的倒入乙杯,乙杯取出的倒入甲杯,使甲乙两杯的浓度相同,问现在两杯溶液的浓度是多少?A.20%   B.20.6  C.21.2%   D21.4%解题分析:设混合后总浓度为x。(六)图解法有些问题条件比较多,数量关系比较复杂,但如果使用适当

8、的图形来表示和区分这些数量,会给人很直观的印象,这种通过画图来帮助解题的方法就是图解法。例6:某工作组12名外国人,其中有6人会说英语,5人会说法语,5人会说西班牙语;有三人既会说英语又会说法语,有2人既会说法语又会说西班牙语,有2人既会说西班牙语又会说英语;有1人这三种语言都会说。则只会说一种语言的人比一种语言都不会说的人多:(    )。A.1人B.2人C.3人D.5人解题分析:此题考查容斥原理

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。