欢迎来到天天文库
浏览记录
ID:8760909
大小:1.99 MB
页数:13页
时间:2018-04-06
《2018年普通高等学校招生全国统一考试新课标卷解析版(理科数学)》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、绝密*启用前2012年普通高等学校招生全国统一考试理科数学注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。2.问答第Ⅰ卷时。选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动.用橡皮擦干净后,再选涂其它答案标号。写在本试卷上无效.3.回答第Ⅱ卷时。将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回。第一卷一.选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。(1)已知集合;,则中所含元素
2、的个数为()【解析】选,,,共10个(2)将名教师,名学生分成个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由名教师和名学生组成,不同的安排方案共有()种种种种【解析】选甲地由名教师和名学生:种(3)下面是关于复数的四个命题:其中的真命题为()的共轭复数为的虚部为【解析】选,,的共轭复数为,的虚部为(4)设是椭圆的左、右焦点,为直线上一点,是底角为的等腰三角形,则的离心率为()【解析】选是底角为的等腰三角形(5)已知为等比数列,,,则()【解析】选,或(6)如果执行右边的程序框图,输入正整数和实数,输出,则()为的和为的算术平均数和分别是中最大的数
3、和最小的数和分别是中最小的数和最大的数【解析】选(7)如图,网格纸上小正方形的边长为,粗线画出的是某几何体的三视图,则此几何体的体积为()【解析】选该几何体是三棱锥,底面是俯视图,高为此几何体的体积为(8)等轴双曲线的中心在原点,焦点在轴上,与抛物线的准线交于两点,;则的实轴长为()【解析】选设交的准线于得:(9)已知,函数在上单调递减。则的取值范围是()【解析】选不合题意排除合题意排除另:,得:(10)已知函数;则的图像大致为()【解析】选得:或均有排除(11)已知三棱锥的所有顶点都在球的求面上,是边长为的正三角形,为球的直径,且;则此棱锥的体积为()【
4、解析】选的外接圆的半径,点到面的距离为球的直径点到面的距离为此棱锥的体积为另:排除(12)设点在曲线上,点在曲线上,则最小值为()【解析】选函数与函数互为反函数,图象关于对称函数上的点到直线的距离为设函数由图象关于对称得:最小值为第Ⅱ卷本卷包括必考题和选考题两部分。第13题~第21题为必考题,每个试题考生都必须作答,第22-第24题为选考题,考生根据要求做答。二.填空题:本大题共4小题,每小题5分。(13)已知向量夹角为,且;则【解析】(14)设满足约束条件:;则的取值范围为【解析】的取值范围为约束条件对应四边形边际及内的区域:则(15)某个部件由三个元件
5、按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布,且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为【解析】使用寿命超过1000小时的概率为三个电子元件的使用寿命均服从正态分布得:三个电子元件的使用寿命超过1000小时的概率为超过1000小时时元件1或元件2正常工作的概率那么该部件的使用寿命超过1000小时的概率为(16)数列满足,则的前项和为【解析】的前项和为可证明:三、解答题:解答应写出文字说明,证明过程或演算步骤。(17)(本小题满分12分)已知分
6、别为三个内角的对边,(1)求(2)若,的面积为;求。【解析】(1)由正弦定理得:(2)解得:(lfxlby)18.(本小题满分12分)某花店每天以每枝元的价格从农场购进若干枝玫瑰花,然后以每枝元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理。(1)若花店一天购进枝玫瑰花,求当天的利润(单位:元)关于当天需求量(单位:枝,)的函数解析式。(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:以100天记录的各需求量的频率作为各需求量发生的概率。(i)若花店一天购进枝玫瑰花,表示当天的利润(单位:元),求的分布列,数学期望及方差;(ii)若花店
7、计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由。【解析】(1)当时,当时,得:(2)(i)可取,,的分布列为(ii)购进17枝时,当天的利润为得:应购进17枝(19)(本小题满分12分)如图,直三棱柱中,,是棱的中点,(1)证明:(2)求二面角的大小。【解析】(1)在中,得:同理:得:面(2)面取的中点,过点作于点,连接,面面面得:点与点重合且是二面角的平面角设,则,既二面角的大小为(20)(本小题满分12分)设抛物线的焦点为,准线为,,已知以为圆心,为半径的圆交于两点;(1)若,的面积为;求的值及圆的方程;(2)若三点在同一直
8、线上,直线与平行,且与只有一个公共点,求坐标原点到距离的比值。【解
此文档下载收益归作者所有