欢迎来到天天文库
浏览记录
ID:8743370
大小:189.00 KB
页数:12页
时间:2018-04-06
《热点探究课6 概率与统计中的高考热点题型导学案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、热点探究课(六) 概率与统计中的高考热点题型[命题解读] 1.概率与统计是高考中相对独立的一个内容,处理问题的方式、方法体现了较高的思维含量.该类问题以应用题为载体,注重考查学生的应用意识及阅读理解能力、分类讨论与化归转化能力.2.概率问题的核心是概率计算,其中事件的互斥、对立、独立是概率计算的核心,排列与组合是进行概率计算的工具,统计问题的核心是样本数据的获得及分析方法,重点是频率分布直方图、茎叶图和样本的数字特征,但近两年全国卷突出回归分析的考查.3.离散型随机变量的分布列及其均值的考查是历年高考的重点,难度多为中低档类题目,特别是与统计内容渗透,背景
2、新颖,充分体现了概率与统计的工具性和交汇性.热点1 统计与统计案例以实际生活中的事例为背景,通过对相关数据的统计分析、抽象概括,作出估计、判断,常与抽样方法、茎叶图、频率分布直方图、概率等知识交汇考查,考查学生的数据处理能力. 近几年出现各种食品问题,食品添加剂会引起血脂增高、血压增高、血糖增高等疾病.为了解“三高”疾病是否与性别有关,医院随机对入院的60人进行了问卷调查,得到了如下的列联表:患“三高”疾病不患“三高”疾病总计男630女总计36(1)请将如图的列联表补充完整;若用分层抽样的方法在患“三高”疾病的人群中抽9人,其中女性抽多少人?(2)为了研究
3、“三高”疾病是否与性别有关,请计算出统计量χ2的值,并说明是否可以在犯错误的概率不超过0.005的前提下认为“三高”疾病与性别有关.下面的临界值表供参考:P(χ2≥x0)0.150.100.050.0250.0100.0050.001x02.0722.7063.8415.0246.6357.87910.828(参考公式χ2=,其中n=a+b+c+d)【导学号:57962479】[解] (1)完善补充列联表如下:患“三高”疾病不患“三高”疾病总计男24630女121830总计3624604分在患“三高”疾病人群中抽9人,则抽取比例为=,所以女性应该抽取12×
4、=3(人).6分(2)根据2×2列联表,则χ2的值χ2==10>7.879.10分所以在允许犯错误的概率不超过0.005的前提下认为是否患“三高”疾病与性别有关.12分[规律方法] 1.将抽样方法与独立性检验交汇,背景新颖,求解的关键是抓住统计图表特征,完善样本数据.2.(1)本题常见的错误是对独立性检验思想理解不深刻,作出无关错误判定.(2)进行独立性检验时,提出的假设是两者无关.[对点训练1] 柴静《穹顶之下》的播出,让大家对雾霾天气的危害有了更进一步的认识,对于雾霾天气的研究也渐渐活跃起来,某研究机构对春节燃放烟花爆竹的天数x与雾霾天数y进行统计分析
5、,得出下表数据:x4578y2356(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程y=bx+a;(3)试根据(2)求出的线性回归方程,预测燃放烟花爆竹的天数为9的雾霾天数.[解] (1)散点图如图所示.4分(2)xiyi=4×2+5×3+7×5+8×6=106,==6,==4,x=42+52+72+82=154,6分则b===1,a=-b=4-6=-2,故线性回归方程为y=bx+a=x-2.8分(3)由回归直线方程可以预测,燃放烟花爆竹的天数为9的雾霾天数为7.12分热点2 常见概率模型的概率几何概型、古典
6、概型、相互独立事件与互斥事件的概率是高考的热点,几何概型主要以客观题进行考查,求解的关键在于找准测度(面积、体积或长度);相互独立事件,互斥事件常作为解答题的一问考查,也是进一步求分布列、均值与方差的基础,求解该类问题要正确理解题意,准确判定概率模型,恰当选择概率公式. 近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000吨生活垃圾,数据统计如下(单位:吨):“厨余垃圾”箱“可回收物”箱“其他垃圾”箱厨余垃圾400100100
7、可回收物3024030其他垃圾202060(1)试估计厨余垃圾投放正确的概率;(2)试估计生活垃圾投放错误的概率.[解] (1)厨余垃圾投放正确的概率约为==.(2)设生活垃圾投放错误为事件A,则事件表示生活垃圾投放正确.事件的概率约为“厨余垃圾”箱里厨余垃圾量、“可回收物”箱里可回收物量与“其他垃圾”箱里其他垃圾量的总和除以生活垃圾总量,即P()约为=0.7,所以P(A)约为1-0.7=0.3.[规律方法] 1.本题求解的关键是从图表中提炼数据信息,理解第(1),第(2)问的含义.2.第(2)问可直接求解,也可间接求解,即求垃圾投放正确的概率,然后通过1
8、-P()求解.[对点训练2] 现有4个人去参加某娱乐活动,该活动有
此文档下载收益归作者所有