2017年苏州市中考一轮复习第12讲《一次函数的综合应用》学案

2017年苏州市中考一轮复习第12讲《一次函数的综合应用》学案

ID:8726150

大小:292.50 KB

页数:19页

时间:2018-04-06

2017年苏州市中考一轮复习第12讲《一次函数的综合应用》学案_第1页
2017年苏州市中考一轮复习第12讲《一次函数的综合应用》学案_第2页
2017年苏州市中考一轮复习第12讲《一次函数的综合应用》学案_第3页
2017年苏州市中考一轮复习第12讲《一次函数的综合应用》学案_第4页
2017年苏州市中考一轮复习第12讲《一次函数的综合应用》学案_第5页
资源描述:

《2017年苏州市中考一轮复习第12讲《一次函数的综合应用》学案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2017年中考数学一轮复习第12讲《一次函数的综合应用》【考点解析】知识点一、函数图象的交点【例题】(2016·重庆市B卷·4分)为增强学生体质,某中学在体育课中加强了学生的长跑训练.在一次女子800米耐力测试中,小静和小茜在校园内200米的环形跑道上同时起跑,同时到达终点;所跑的路程S(米)与所用的时间t(秒)之间的函数图象如图所示,则她们第一次相遇的时间是起跑后的第 120 秒.【考点】一次函数的应用.【分析】分别求出OA、BC的解析式,然后联立方程,解方程就可以求出第一次相遇时间.【解答】解:设直线OA的解析式为y=kx,代入A(200,800)得800=2

2、00k,解得k=4,故直线OA的解析式为y=4x,设BC的解析式为y1=k1x+b,由题意,得,解得:,∴BC的解析式为y1=2x+240,当y=y1时,4x=2x+240,解得:x=120.则她们第一次相遇的时间是起跑后的第120秒.故答案为120.【点评】本题考查了一次函数的运用,一次函数的图象的意义的运用,待定系数法求一次函数的解析式的运用,解答时认真分析求出一次函数图象的数据意义是关键.【变式】直线y=-2x+m与直线y=2x-1的交点在第四象限,则m的取值范围是(  )A.m>-1B.m<1C.-1<m<1D.-1≤m≤1【答案】C【解析】联立,解得,∵

3、交点在第四象限,∴,解不等式①得,m>-1,解不等式②得,m<1,所以,m的取值范围是-1<m<1.故选C.知识点二、一次函数与一元一次不等式【例题】(2015辽宁辽阳)如图,直线与(且a,b为常数)的交点坐标为(3,﹣1),则关于x的不等式的解集为()A.x≥﹣1B.x≥3C.x≤﹣1D.x≤3【答案】D.【分析】根据图形即可得到不等式的解集.【解析】从图象得到,当x≤3时,的图象对应的点在函数的图象上面,∴不等式的解集为x≤3.故选D.【点评】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值

4、范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.要注意数形结合,直接从图中得到结论.【方法技巧规律】一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.【变式】(2016·广西百色·3分)直线y=kx+3经过点A(2,1),则不等式kx+3≥0的解集是(  )A.x≤3B.x≥3C.x≥﹣3D.x≤0【考点】一次函数与一元一次不等式.【分析】首先把点A(2,1)代入y=kx+3中,可得k的值,再解不等式kx+3≥0即可.【解答】解:∵y

5、=kx+3经过点A(2,1),∴1=2k+3,解得:k=﹣1,∴一次函数解析式为:y=﹣x+3,﹣x+3≥0,解得:x≤3.故选A.知识点三、方案设计【例题】(2016·湖北荆门·12分)A城有某种农机30台,B城有该农机40台,现要将这些农机全部运往C,D两乡,调运任务承包给某运输公司.已知C乡需要农机34台,D乡需要农机36天,从A城往C,D两乡运送农机的费用分别为250元/台和200元/台,从B城往C,D两乡运送农机的费用分别为150元/台和240元/台.(1)设A城运往C乡该农机x台,运送全部农机的总费用为W元,求W关于x的函数关系式,并写出自变量x的取值

6、范围;(2)现该运输公司要求运送全部农机的总费用不低于16460元,则有多少种不同的调运方案?将这些方案设计出来;(3)现该运输公司决定对A城运往C乡的农机,从运输费中每台减免a元(a≤200)作为优惠,其它费用不变,如何调运,使总费用最少?【考点】一次函数的应用;一元一次不等式的应用.【分析】(1)A城运往C乡的化肥为x吨,则可得A城运往D乡的化肥为30﹣x吨,B城运往C乡的化肥为34﹣x吨,B城运往D乡的化肥为40﹣(34﹣x)吨,从而可得出W与x大的函数关系.(2)根据题意得140x+12540≥16460求得28≤x≤30,于是得到有3种不同的调运方案,写

7、出方案即可;(3)根据题意得到W=x+12540,所以当a=200时,y最小=﹣60x+12540,此时x=30时y最小=10740元.于是得到结论.【解答】解:(1)W=250x+200(30﹣x)+150(34﹣x)+240(6+x)=140x+12540(0<x≤30);(2)根据题意得140x+12540≥16460,∴x≥28,∵x≤30,∴28≤x≤30,∴有3种不同的调运方案,第一种调运方案:从A城调往C城28台,调往D城2台,从,B城调往C城6台,调往D城34台;第二种调运方案:从A城调往C城29台,调往D城1台,从,B城调往C城5台,调往D城35

8、台;第三种

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。