欢迎来到天天文库
浏览记录
ID:8721346
大小:225.00 KB
页数:11页
时间:2018-04-05
《2012年上海市中考数学试卷详解版沪科版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2012年上海市中考数学试卷一.选择题(共6小题)1.(2012上海)在下列代数式中,次数为3的单项式是( ) A.xy2B.x3+y3C..x3yD..3xy考点:单项式。解答:解:根据单项式的次数定义可知:A、xy2的次数为3,符合题意;B、x3+y3不是单项式,不符合题意;C、x3y的次数为4,不符合题意;D、3xy的次数为2,不符合题意.故选A.2.(2012上海)数据5,7,5,8,6,13,5的中位数是( ) A.5B.6C.7D.8考点:中位数。解答:解:将数据5,7,5,8,6,
2、13,5按从小到大依次排列为:5,5,5,6,7,8,13,位于中间位置的数为6.故中位数为6.故选B.3.(2012上海)不等式组的解集是( ) A.x>﹣3B.x<﹣3C.x>2D.x<2考点:解一元一次不等式组。解答:解:,由①得:x>﹣3,由②得:x>2,所以不等式组的解集是x>2.故选C.4.(2012上海)在下列各式中,二次根式的有理化因式是( ) A.B.C.D.考点:分母有理化。解答:解:∵×=a﹣b,∴二次根式的有理化因式是:.故选:C.5.(2012上海)在下列图形中,为中心
3、对称图形的是( ) A.等腰梯形B.平行四边形C.正五边形D.等腰三角形考点:中心对称图形。解答:解:中心对称图形,即把一个图形绕一个点旋转180°后能和原来的图形重合,A、C、D都不符合;是中心对称图形的只有B.故选:B.6.(2012上海)如果两圆的半径长分别为6和2,圆心距为3,那么这两个圆的位置关系是( ) A.外离B.相切C.相交D.内含考点:圆与圆的位置关系。解答:解:∵两个圆的半径分别为6和2,圆心距为3,又∵6﹣2=4,4>3,∴这两个圆的位置关系是内含.故选:D.二.填空题(共
4、12小题)7.(2012上海)计算=.考点:绝对值;有理数的减法。解答:解:
5、﹣1
6、=1﹣=,故答案为:.8.因式分解:xy﹣x=.考点:因式分解-提公因式法。解答:解:xy﹣x=x(y﹣1).故答案为:x(y﹣1).9.(2012上海)已知正比例函数y=kx(k≠0),点(2,﹣3)在函数上,则y随x的增大而(增大或减小).考点:正比例函数的性质;待定系数法求一次函数解析式。解答:解:∵点(2,﹣3)在正比例函数y=kx(k≠0)上,∴2k=﹣3,解得:k=﹣,∴正比例函数解析式是:y=﹣x,∵k
7、=﹣<0,∴y随x的增大而减小,故答案为:减小.10.方程的根是.考点:无理方程。解答:解:方程两边同时平方得:x+1=4,解得:x=3.检验:x=3时,左边==2,则左边=右边.故x=3是方程的解.故答案是:x=3.11.(2012上海)如果关于x的一元二次方程x2﹣6x+c=0(c是常数)没有实根,那么c的取值范围是.考点:根的判别式。解答:解:∵关于x的一元二次方程x2﹣6x+c=0(c是常数)没有实根,∴△=(﹣6)2﹣4c<0,即36﹣4c<0,c>9.故答案为c>9.12.(2012上海
8、)将抛物线y=x2+x向下平移2个单位,所得抛物线的表达式是.考点:二次函数图象与几何变换。解答:解:∵抛物线y=x2+x向下平移2个单位,∴抛物线的解析式为y=x2+x﹣2,故答案为y=x2+x﹣2.13.(2012上海)布袋中装有3个红球和6个白球,它们除颜色外其他都相同,如果从布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是.考点:概率公式。解答:解:∵一个布袋里装有3个红球和6个白球,∴摸出一个球摸到红球的概率为:=.故答案为.14.(2012上海)某校500名学生参加生命安全知识测试
9、,测试分数均大于或等于60且小于100,分数段的频率分布情况如表所示(其中每个分数段可包括最小值,不包括最大值),结合表1的信息,可测得测试分数在80~90分数段的学生有名.考点:频数(率)分布表。解答:解:80~90分数段的频率为:1﹣0.2﹣0.25﹣0.25=0.3,故该分数段的人数为:500×0.3=150人.故答案为:150.15.(2012上海)如图,已知梯形ABCD,AD∥BC,BC=2AD,如果,,那么=(用,表示).考点:*平面向量。解答:解:∵梯形ABCD,AD∥BC,BC=2A
10、D,,∴=2=2,∵,∴=+=2+.故答案为:2+.16.(2012上海)在△ABC中,点D、E分别在AB、AC上,∠AED=∠B,如果AE=2,△ADE的面积为4,四边形BCDE的面积为5,那么AB的长为.考点:相似三角形的判定与性质。解答:解:∵∠AED=∠B,∠A是公共角,∴△ADE∽△ACB,∴,∵△ADE的面积为4,四边形BCDE的面积为5,∴△ABC的面积为9,∵AE=2,∴,解得:AB=3.故答案为:3.17.(2012上海)我们把两个三角形的中心之间的
此文档下载收益归作者所有