资源描述:
《2010北京市高考数学试题(理科)试题》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、绝密«使用完毕前2010年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷分第Ⅰ卷和第Ⅱ卷两部分。第Ⅰ卷1至2页、第Ⅱ卷3至5页,共150分。考试时长120分钟。考生务必将答案答在答题卡上,在试卷上作答无效,考试结束后,将本试卷和答题卡。第Ⅰ卷(选择题共140分)一、本大题共8小题,每小题5分,共40分。在每小题列出的四个选项中,选出符合题目要求的一项。(1)集合,则=(A){1,2}(B){0,1,2}(C){1,2,3}(D){0,1,2,3}(2)在等比数列中,,公比.若,则m=(A)9(B)10(C)11(D)1
2、2[来源:Z
3、xx
4、k.Com](3)一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如右图所示,则该几何体的俯视图为(4)8名学生和2位第师站成一排合影,2位老师不相邻的排法种数为(A)(B)(C)(D)(5)极坐标方程(p-1)()=(p0)表示的图形是(A)两个圆(B)两条直线(C)一个圆和一条射线(D)一条直线和一条射线(6)a、b为非零向量。“”是“函数f(x)=(xa+b)(xb-a)为一次函数”的(A)充分而不必要条件(B)必要不充分条件(C)充分必要条件(D)既不充分也不必要条件(7)设不
5、等式组表示的平面区域为D,若指数函数y=的图像上存在区域D上的点,则a的取值范围是(A)(1,3](B)[2,3](C)(1,2](D)[3,](8)如图,正方体ABCD-的棱长为2,动点E、F在棱上,动点P,Q分别在棱AD,CD上,若EF=1,E=x,DQ=y,DP=z(x,y,z大于零),则四面体PEFQ的体积 (A)与x,y,z都有关 (B)与x有关,与y,z无关 (C)与y有关,与x,z无关 (D)与z有关,与x,y无关第II卷(共110分)二、填空题:本
6、大题共6小题,每小题5分,共30分。(9)在复平面内,复数对应的点的坐标为。(10)在△ABC中,若b=1,c=,,则a=。(11)从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图)。由图中数据可知a=。若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为。(12)如图,的弦ED,CB的延长线交于点A。若BDAE,AB=4,BC=2,AD=3,则DE=;CE=。(1
7、3)已知双曲线的离心率为2,焦点与椭圆的焦点相同,那么双曲线的焦点坐标为;渐近线方程为。(14)如图放置的边长为1的正方形PABC沿轴滚动。设顶点的轨迹方程是,则函数的最小正周期为;在其两个相邻零点间的图象与轴所围区域的面积为。说明:“正方形PABC沿轴滚动”包括沿轴正方向和沿轴负方向滚动。沿轴正方向滚动指的是先以顶点A为中心顺时针旋转,当顶点B落在轴上时,再以顶点B为中心顺时针旋转,如此继续。类似地,正方形PABC可以沿轴负方向滚动。三、解答题:本大题共6小题,共80分。解答应写出文字说明,演算步骤或证明过程。(15)(本小
8、题共13分)已知函数。(Ⅰ)求的值;[来源:学科网](Ⅱ)求的最大值和最小值。(16)(本小题共14分)如图,正方形ABCD和四边形ACEF所在的平面互相垂直,CE⊥AC,EF∥AC,AB=,CE=EF=1.(Ⅰ)求证:AF∥平面BDE;(Ⅱ)求证:CF⊥平面BDE;(Ⅲ)求二面角A-BE-D的大小。[来源:学+科+网Z+X+X+K](17)(本小题共13分)某同学参加3门课程的考试。假设该同学第一门课程取得优秀成绩的概率为,第二、第三门课程取得优秀成绩的概率分别为,(>),且不同课程是否取得优秀成绩相互独立。记ξ为该生取得优
9、秀成绩的课程数,其分布列为ξ01[来源:学科网ZXXK]23[来源:学科网](Ⅰ)求该生至少有1门课程取得优秀成绩的概率;(Ⅱ)求,的值;(Ⅲ)求数学期望ξ。(18)(本小题共13分)已知函数()=In(1+)-+(≥0)。(Ⅰ)当=2时,求曲线=()在点(1,(1))处的切线方程;(Ⅱ)求()的单调区间。(19)(本小题共14分)在平面直角坐标系xOy中,点B与点A(-1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于.(Ⅰ)求动点P的轨迹方程;(Ⅱ)设直线AP和BP分别与直线x=3交于点M,N,问:是否存在点
10、P使得△PAB与△PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由。(20)(本小题共13分)已知集合对于,,定义A与B的差为A与B之间的距离为(Ⅰ)证明:,且;(Ⅱ)证明:三个数中至少有一个是偶数(Ⅲ)设P,P中有m(m≥2)个元素,记P中所有两元素间距离的平均