欢迎来到天天文库
浏览记录
ID:8700595
大小:1.06 MB
页数:13页
时间:2018-04-05
《2006年普通高等学校招生全国统一考试(江苏卷)(数学)word版含答案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、绝密★启用前2006年普通高等学校招生全国统一考试(江苏卷)数学第I卷(选择题共60分)注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求1、本试卷共4页,包含选择题(第1题~第10题,共10题)、填空题(第11题~第16题,共6题)、解答题(第17题~第21题,共5题)三部分。本次考试时间为120分钟。考试结束后,请将本试卷和答题卡一并交回。2、答题前,请您务必将自己的姓名、考试证号用书写黑色字迹的0.5毫米签字笔填写在试卷及答题卡上。3、请认真核对监考员所粘贴的条形码上的姓名、考试证号是否与您本人的相符。4、作答非选择题必须用书写黑色字迹的0.5毫
2、米签字笔写在答题卡上的指定位置,在其它位置作答一律无效。作答选择题必须用2B铅笔把答题卡上对应题目的答案标号涂黑。如需改动,请用橡皮擦干净后,再选涂其它答案。5、如有作图需要,可用2B铅笔作答,并请加黑加粗,描写清楚。参考公式:一组数据的方差其中为这组数据的平均数一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,恰有一项是符合题目要求的。(1)已知,函数为奇函数,则a=(A)0 (B)1 (C)-1 (D)±1[来源:学,科,网Z,X,X,K][来源:学科网ZXXK](2)圆的切线方程中有一个是(A)x-y=0 (B)x+
3、y=0 (C)x=0 (D)y=0(3)某人5次上班途中所花的时间(单位:分钟)分别为x,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x-y|的值为(A)1 (B)2 (C)3 (D)4(4)为了得到函数的图像,只需把函数的图像上所有[来源:Zxxk.Com]的点(A)向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍(纵坐标不变)(B)向右平移个单位长度,再把所得各点的横坐标缩短到原来的倍(纵坐标不变)(C)向左平移个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)(D)向右平移个单位长度,再把所得各点的横坐标伸长到
4、原来的3倍(纵坐标不变)(5)的展开式中含x的正整数指数幂的项数是(A)0 (B)2 (C)4 (D)6(6)已知两点M(-2,0)、N(2,0),点P为坐标平面内的动点,满足 =0,则动点P(x,y)的轨迹方程为(A) (B) (C) (D)(7)若A、B、C为三个集合,,则一定有(A) (B) (C) (D)(8)设a、b、c是互不相等的正数,则下列等式中不恒成立的是(A) (B)(C) (D)ADCB(9)两相同的正四棱锥组成如图1所示的几何体,可放棱长为1的正方体内,使正四棱锥的底面ABCD与正方体的某一个
5、平面平行,且各顶点均在正方体的面上,则这样的几何体体积的可能值有图1(A)1个 (B)2个(C)3个 (D)无穷多个信号源(10)右图中有一个信号源和五个接收器。接收器与信号源在同一个串联线路中时,就能接收到信号,否则就不能接收到信号。若将图中左端的六个接线点随机地平均分成三组,将右端的六个接线点也随机地平均分成三组,再把所有六组中每组的两个接线点用导线连接,则这五个接收器能同时接收到信号的概率是(A) (B)(C) (D)二、填空题:本大题共6小题,每小题5分,共30分。不需要写出解答过程,请把答案直接填空在答题卡相应位置上。(11)在△ABC中
6、,已知BC=12,A=60°,B=45°,则AC= ▲ (12)设变量x、y满足约束条件,则的最大值为 ▲ (13)今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有 ▲种不同的方法(用数字作答)。(14)= ▲ (15)对正整数n,设曲线在x=2处的切线与y轴交点的纵坐标为,则数列的前n项和的公式是 ▲ (16)不等式的解集为 ▲ 三、解答题:本大题共5小题,共70分。请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤。(17)(本小题满分12分,第一小问满分5分,第二小问满分7分) 已知三点P(5,2)、(-
7、6,0)、(6,0).(Ⅰ)求以、为焦点且过点P的椭圆的标准方程;O(Ⅱ)设点P、、关于直线y=x的对称点分别为、、,求以、为焦点且过点的双曲线的标准方程。(18)(本小题满分14分)O1 请您设计一个帐篷。它下部的形状是高为1m的正六棱柱,上部的形状是侧棱长为3m的正六棱锥(如右图所示)。试问当帐篷的顶点O到底面中心的距离为多少时,帐篷的体积最大?(19)(本小题满分14分,第一小问满分4分,第二小问满分5分,第三小问满分5分) 在正三角形ABC中,E、F、P分别是AB、AC、BC边上的点,满足AE:EB=CF:FA=CP:PB=1:2(如图1)。将△
8、AEF沿EF折起到的位置
此文档下载收益归作者所有